Beams Session 15-22 Subject: S1014 / MECHANICS of MATERIALS Year: 2008.

Post on 11-Jan-2016

214 views 0 download

Tags:

Transcript of Beams Session 15-22 Subject: S1014 / MECHANICS of MATERIALS Year: 2008.

Beams Session 15-22

Subject : S1014 / MECHANICS of MATERIALSYear : 2008

Bina Nusantara

What is Bending Stresses ?

Bina Nusantara

What is Bending Stresses ?

Bina Nusantara

Normal Stress

A normal stress is a stress that occurs when a member is loaded by an axial force. 

The value of the normal force for any prismatic section is simply the force divided by the cross sectional area.

Bina Nusantara

Normal Stress

Bina Nusantara

What is Bending Stresses ?

Bina Nusantara

What is Bending Stresses ?

When a member is being loaded similar to that in figure 1 bending stress (or flexure stress) will result.  Bending stress is a more specific type of normal stress. 

Bina Nusantara

What is Bending Stresses ?

When a beam experiences load like that shown in figure 1 the top fibers of the beam undergo a normal compressive stress. 

Bina Nusantara

What is Bending Stresses ?

The stress at the horizontal plane of the neutral is zero.  The bottom fibers of the beam undergo a normal tensile stress. 

Bina Nusantara

What is Bending Stresses ?It can be concluded therefore that the value of the bending stress will vary linearly with distance from the neutral axis.

Bina Nusantara

What is Bending Stresses ?

Bina Nusantara

Shear Stress

Normal stress is a result of load applied perpendicular to a member.  Shear stress however results when

a load is applied parallel to an area. 

Bina Nusantara

Shear StressLike in bending stress, shear stress will vary across the cross sectional area.

Bina Nusantara

Shear Stress

Bina Nusantara

ELASTIC CURVE

The deflection diagram of the longitudinal axis that passes through the centroid of each cross-sectional area of the beam is called the elastic curve, which is characterized by the deflection and slope along the curve. E.g.

Bina Nusantara

ELASTIC CURVE

Moment-curvature relationship:Sign convention:

Bina Nusantara

ELASTIC CURVE

Moment-curvature relationship:Sign convention:

Bina Nusantara

ELASTIC CURVE

Bina Nusantara

ELASTIC CURVE

Bina Nusantara

ELASTIC CURVE

Consider a segment of width dx, the strain in are ds, located at a position y from the neutral axis is ε = (ds’ – ds)/ds. However, ds = dx = ρdθ and ds’ = (ρ-y) dθ, and so ε = [(ρ – y) dθ – ρdθ ] / (ρdθ), or

1 ρ

= – ε y

Bina Nusantara

ELASTIC CURVE

Comparing with the Hooke’s Law ε = σ / E and the flexure formula σ = -My/IWe have

1 ρ = M

EI or

1 ρ

= – σ Ey

Bina Nusantara

SLOPE AND DISPLACEMENT BY INTEGATION (CONT.)

Boundary Conditions:

• The integration constants can be determined by imposing the boundary conditions, or

• Continuity condition at specific locations

Bina Nusantara

SLOPE AND DISPLACEMENT BY INTEGATION (CONT.)

Boundary Conditions:

• The integration constants can be determined by imposing the boundary conditions, or

• Continuity condition at specific locations

Bina Nusantara

SLOPE AND DISPLACEMENT BY INTEGATION (CONT.)

Boundary Conditions:

• The integration constants can be determined by imposing the boundary conditions, or

• Continuity condition at specific locations

Bina Nusantara

SLOPE AND DISPLACEMENT BY INTEGATION (CONT.)

Boundary Conditions:

• The integration constants can be determined by imposing the boundary conditions, or

• Continuity condition at specific locations

Bina Nusantara

This assumes that the system is linear-elastic, and therefore the deflection is a linear function of F.

, Deflection at B

Loa

d, F

Bina Nusantara

The total strain energy stored in the system is the sum of the individual strain energies in each of the truss members numbered i=1 to 7.

ii

ii

i AE

LPU

2

27

1

Bina Nusantara

Beam Elements:

y

x

y

dxdA

z

y

F(x)

A beam that is symmetrical in x-section about the z-axis, is subjected to bending. Consider a infinitesimal volume element of length dx and area dA as shown. This element is subjected to a normal stress: sx=My/I

Bina Nusantara

Beam Elements:

y

x

y

dxdA

z

y

F(x)

The Strain Energy Density on this element is:

2

2

12

1

x

xx

E

u

For linear elastic material

Bina Nusantara

Substituting,

I

Myx dxdA

EI

yMudxdA

2

22

2

and multiplying by the Volume of the element

Hence, the Strain Energy for a slice of the beam, of width dx, is

A

A

dAydxEI

M

udxdAdU

22

2

2

y

x

dx

xxAIdAy 2

dxEI

MdU

2

2

Bina Nusantara

Strain Energy in Entire Beam

Consider the cantilever beam as shown

I

FL

x

y

M=F(x-L)

dxEI

LxFU

L2

0 2

EI

LF

6

32

Bina Nusantara

Deflection

I

L

x

y

F

FW2

1 =

EI

LF

6

32

EI

FL

3

3

External Work, Strain Energy

Linear-elastic,F

Classical Solution

Bina Nusantara

y

x

P

L/2 L/2

She

ar F

orce

PL/4

P/2

-P/2M

omen

t

Determine Elastic Strain Energy due to bending for simply supported 3-point bending member of constant X-section.

For 0 xL/2: M=Px/2

Note by symmetry we can find the total strain energy by doubling the strain energy of the LHS.

Bina Nusantara

EI

LP

EI

xP

dxEI

xP

dxEI

Mdx

EI

MU

L

L

LL

96

12

82

22

2

32

2/

0

32

2/

0

22

2/

0

2

0

2

y

L/2 L/2

P

B

Determine B…….

Bina Nusantara

Elastic Strain Energy due to Transverse Shear Stress

y

x

3

2

1aU yxy

xya

xy

G

Gu

xy

xyxyxyxy

2

;2

1

2

xy

Bina Nusantara

Shear Strain Energy

y

dA

z

y

x

dx

F(x)

dxAG

fT

dAdxGA

TU

forceshearTWheredAT

dVG

udVU

xy

xy

2

2

2

2

2

1

2

1

;/2

1

f is called a form factor:Circle f=1.11Rectangle f=1.2Tube f=2.00I section f=A/Aweb

Bina Nusantara

Applications:

• Castigliano’s 2nd theorem can be used to determine the deflections in structures (eg, trusses, beams, frames, shells) and we are not limited to applications in which only 1 external force or moment acts.

• Furthermore, we can determine the deflection or rotation at any point, even where no force or moment is applied externally.

Bina Nusantara

Design Considerations• Stress – Yield Failure or Code Compliance

• Deflection• Strain• Stiffness• Stability – Important in compressive members

• Stress and strain relationships can be studied with Mohr’s circle

Often the controlling factor for functionality

Bina Nusantara

Deflection [Everything’s a Spring]• When loads are applied, we have

deflection• Depends on

– Type of loading• Tension• Compression• Bending • Torsion

– Cross-section of member– Comparable to pushing on a spring

• We can calculate the amount of beam deflection by various methods

Bina Nusantara

Superposition• Determine effects of individual loads

separately and add the results • May be applied if

– Each effect is linearly related to the load that produces it

– A load does not create a condition that affects the result of another load

– Deformations resulting from any specific load are not large enough to appreciably alter the geometric relations of the parts of the structural system

Bina Nusantara

Deflection --- Energy Method

There are situations where the tables are insufficientWe can use energy-methods in these circumstancesDefine strain energy

1

0

x

FdxU

Bina Nusantara

Deflection --- Energy Method

• Define strain energy density**V – volume

dV

dU

Bina Nusantara

Deflection --- Energy Method

Put in terms of ,

dVE

U

dUdVdV

dUE

E

x

xxx

xx

2

2

2

1

2

1

2

1

Bina Nusantara

Example – beam in bending

)(2

2

2

2

2

2

22

2

xfEI

M

dAdxdV

dVEI

yMU

dVE

U

I

My

x

Bina Nusantara

Example – beam in bending

dxEI

MU

dxEI

dAyMdAdx

EI

yMdV

EI

yMU

dAyI

2

2)(

222

2

22

2

22

2

22

2

Bina Nusantara

Castigliano’s Theorem

• Deflection at any point along a beam subjected to n loads may be expressed as the partial derivative of the strain energy of the structure WRT the load at that point

ii F

U

Bina Nusantara

Castigliano’s Theorem

• We can derive the strain energy equations as we did for bending

• Then we take the partial derivative to determine the deflection equation

• AND if we don’t have a force at the desired point:– If there is no load acting at the point of interest, add a

dummy load Q, work out equations, then set Q = 0

Bina Nusantara

Stability

• Up until now, 2 primary concerns– Strength of a structure

• It’s ability to support a specified load without experiencing excessive stress

– Ability of a structure to support a specified load without undergoing unacceptable deformations

• Now, look at STABILITY of the structure– It’s ability to support a load without undergoing a

sudden change in configuration

Materialfailure

Bina Nusantara

Unit Load Method

• Deflection at C ???

A BC

L

q

Bina Nusantara

Unit Load Method

• Procedure 1 : Determine Mo

A BC

L

q

Bina Nusantara

Unit Load Method

Procedure 1 : Determine Mo

q

VA

HA

VB

MA=0w. ½ L- VB.L = 0qL ½ L- VB.L= 0½ qL2 – VB.L = 0

VB = ½ qL

Bina Nusantara

Unit Load Method

Procedure 1 : Determine Mo

q

VA

HA

VB

VA = ½ qL

MB=0- w. ½ L+ VA.L = 0- qL ½ L+ VA.L= 0- ½ qL2 + VA.L = 0

Bina Nusantara

Unit Load Method

Procedure 1 : Determine Mo

q

VA

HA

VB

H=0HA = 0

HA = 0

V=0

VA + VB = w½ qL + ½ qL = qL

OK!!!

Bina Nusantara

Unit Load MethodProcedure 1 : Determine Mo ( cont’ ) for A-C 0<x1< 1/2 L

HA

VA

q

A

w = qx1

x1

Mx=0w.( ½ .x1) –VA.x1 + Mx1 = 0( qx1.x1 ) .( ½ .x1) – qL.x1 + Mx1 = 0Mx1 = qLx1 – ½ x1

2

Mx1 = qLx1 – ½ x12

Mx1

Bina Nusantara

Unit Load MethodProcedure 1 : Determine Mo ( cont’ ) for B-C 0<x2< 1/2 L

Mx=0w.( ½ .x2) –VB.x2 + Mx2 = 0( qx1.x2 ) .( ½ .x2) – qL.x2 + Mx2 = 0Mx2 = qLx2 – ½ x2

2

Mx2 = qLx2 – ½ x22

VB

B

x2 q

w = qx2

Mx2

Bina Nusantara

Unit Load MethodProcedure 2 : Put P = 1 unit on C ( without external loads )

VA

HA

VB

MA=0P. ½ L- VB.L = 01 ½ L- VB.L= 0½ L – VB.L = 0

VB = ½

P = 1 unit

Bina Nusantara

Unit Load MethodProcedure 2 : Put P = 1 unit on C ( without external loads )

VA

HA

VB

VA = ½

MB=0- P. ½ L+ VA.L = 0- 1. ½ L+ VA.L= 0- ½ L + VA.L = 0

P = 1 unit

Bina Nusantara

Unit Load MethodProcedure 2 : Put P = 1 unit on C ( without external loads )

VA

HA

VB

H=0HA = 0

HA = 0

V=0

VA + VB = w½ + ½ = 1 OK!!!

P = 1 unit

Bina Nusantara

Unit Load Method

Procedure 3 : Determine m for A-C 0<x1< 1/2 L

HA

VA

Ax1

Mx=0–VA.x1 + mx1 = 0– ½ .x1 + mx1 = 0mx1 = ½ x1

mx1 = ½ x1

mx1

Bina Nusantara

Unit Load MethodProcedure 3 : Determine m ( cont’ ) for B-C 0<x2< 1/2 L

Mx=0–VB.x2 + Mx2 = 0– ½ .x2 + Mx2 = 0Mx2 = ½ x2

Mx2 = ½ x2

VB

B

x2 q

Mx2

Bina Nusantara

Unit Load MethodProcedure 4 : Determine deflection at C

Mx1 = qLx1 – ½ x12 Mx2 = qLx2 – ½ x2

2

mx1 = ½ x1 Mx2 = ½ x2

A-C0<x1< ½ L

B-C0<x2< ½ L

odxEI

mxMx

.

Bina Nusantara

Unit Load Method

Procedure 4 : Determine deflection at C

2

2/1

0

2221

2/1

0

111 )(1/2x*)2^ x½– (qLx)(1/2x*)2^ x½– (qLxdx

EIdx

EI

LL

dxEI

mxMx

.

Bina Nusantara

Unit Load Method

Procedure 4 : Determine deflection at C

384

5

EI

qL

2

2/1

0

2221

2/1

0

111 )(1/2x*)2^ x½– (qLx)(1/2x*)2^ x½– (qLxdx

EIdx

EI

LL

Bina Nusantara

Unit Load Method

Deflection at C =

A BC

L

q 384

5

EI

qL

Bina Nusantara

Unit Load Method

• Slope Deflection C ???

A BC

L

q

Bina Nusantara

Unit Load Method

• Procedure 1 : Determine Mo

A BC

L

q

Bina Nusantara

Unit Load Method

Procedure 1 : Determine Mo

q

VA

HA

VB

MA=0w. ½ L- VB.L = 0qL ½ L- VB.L= 0½ qL2 – VB.L = 0

VB = ½ qL

Bina Nusantara

Unit Load Method

Procedure 1 : Determine Mo

q

VA

HA

VB

VA = ½ qL

MB=0- w. ½ L+ VA.L = 0- qL ½ L+ VA.L= 0- ½ qL2 + VA.L = 0

Bina Nusantara

Unit Load Method

Procedure 1 : Determine Mo

q

VA

HA

VB

H=0HA = 0

HA = 0

V=0

VA + VB = w½ qL + ½ qL = qL

OK!!!

Bina Nusantara

Unit Load MethodProcedure 1 : Determine Mo ( cont’ ) for A-C 0<x1< 1/2 L

HA

VA

q

A

w = qx1

x1

Mx=0w.( ½ .x1) –VA.x1 + Mx1 = 0( qx1.x1 ) .( ½ .x1) – qL.x1 + Mx1 = 0Mx1 = qLx1 – ½ x1

2

Mx1 = qLx1 – ½ x12

Mx1

Bina Nusantara

Unit Load MethodProcedure 1 : Determine Mo ( cont’ ) for B-C 0<x2< 1/2 L

Mx=0w.( ½ .x2) –VB.x2 + Mx2 = 0( qx1.x2 ) .( ½ .x2) – qL.x2 + Mx2 = 0Mx2 = qLx2 – ½ x2

2

Mx2 = qLx2 – ½ x22

VB

B

x2 q

w = qx2

Mx2

Bina Nusantara

Unit Load MethodProcedure 2 : Put M = 1 unit on C ( without external loads )

MA=0M - VB.L = 01 - VB.L= 0

VB = 1/L

VA

HA

VB

M = 1 unit

Bina Nusantara

Unit Load MethodProcedure 2 : Put M = 1 unit on C ( without external loads )

MB=0M + VA.L = 01 + VA.L= 0

VA = -1/L

VA

HA

VB

M = 1 unit

Bina Nusantara

Unit Load MethodProcedure 2 : Put M = 1 unit on C ( without external loads )

VA

HA

VB

M = 1 unit

H=0HA = 0

HA = 0

V=0

-VA + VB = 0- ½L + ½L = 0 OK!!!

Bina Nusantara

Unit Load Method

Procedure 3 : Determine m for A-C 0<x1< 1/2 L

HA

VA

Ax1

Mx=0–VA.x1 + mx1 = 0– -1/L .x1 + mx1 = 0mx1 = -1/L x1

mx1 = -1/L x1

mx1

Bina Nusantara

Unit Load MethodProcedure 3 : Determine m ( cont’ ) for B-C 0<x2< 1/2 L

Mx=0–VB.x2 + Mx2 = 0– 1/L.x2 + Mx2 = 0Mx2 = 1/Lx2

Mx2 = 1/L x2

VB

B

x2 q

Mx2

Bina Nusantara

Unit Load MethodProcedure 4 : Determine deflection at C

Mx1 = qLx1 – ½ x12 Mx2 = qLx2 – ½ x2

2

mx1 = -1/Lx1 Mx2 = 1/Lx2

A-C0<x1< ½ L

B-C0<x2< ½ L

o

dxEI

mxMx

.

Bina Nusantara

Unit Load Method

Procedure 4 : Determine deflection at C

2

2/1

0

2221

2/1

0

111 )(1/Lx*)2^ x½– (qLx)(-1/Lx*)2^ x½– (qLxdx

EIdx

EI

L

o

L

o

dxEI

mxMx

.

Bina Nusantara

Unit Load Method

Procedure 4 : Determine deflection at C

0

2

2/1

0

2221

2/1

0

111 )(1/Lx*)2^ x½– (qLx)(-1/Lx*)2^ x½– (qLxdx

EIdx

EI

L

o

L

Bina Nusantara

Unit Load Method

Slope Deflection C = 0

A BC

L

q