Autumn collections : from iterable to lambdas, streams and collectors

Post on 26-Jan-2015

104 views 1 download

Tags:

description

These are the slides of my talk at Devoxx 2013. This presentation introduces the lambda expressions, how we can write them, and what they bring to us developers. The second part presents in details the new patterns introduced by the Stream and Collector APIs. These new APIs will change the way we process large collections content, enabling concurrent and parallel access, with a very simple programming model, and amazing patterns. Complex examples will show how powerful those APIs are, and how they can help us write efficient and clean code.

Transcript of Autumn collections : from iterable to lambdas, streams and collectors

#DV13LBDS @JosePaumard

Autumn Collections

From Iterable to Lambdas,

Streams and Collectors

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

Why were they introduced ?

#DV13LBDS @JosePaumard

Why were they introduced ?

Why are they so important ?

#DV13LBDS @JosePaumard

Why were they introduced ?

Why are they so important ?

How will they change the way we build

applications ?

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

Questions ?

#DV13LBDS

#DV13LBDS @JosePaumard

Let’s introduce the lambdas

#DV13LBDS @JosePaumard

Let’s introduce the lambdas on a simple example

#DV13LBDS @JosePaumard

A very simple example

public class Person { private String name ; private int age ; // constructors // getters / setters }

List<Person> list = new ArrayList<>() ;

A plain old bean…

… and a good old list

#DV13LBDS @JosePaumard

int sum = 0 ; // I need a default value in case // the list is empty int average = 0 ; for (Person person : list) { sum += person.getAge() ; } if (!list.isEmpty()) { average = sum / list.size() ; }

Average of the ages

#DV13LBDS @JosePaumard

int sum = 0 ; int n = 0 ; int average = 0 ; for (Person person : list) { if (person.getAge() > 20) { n++ ; sum += person.getAge() ; } } if (n > 0) { average = sum / n ; }

Trickier : average of the ages of people older than 20

#DV13LBDS @JosePaumard

Trickier : average of the ages of people older than 20

« imperative programming »

int sum = 0 ; int n = 0 ; int average = 0 ; for (Person person : list) { if (person.getAge() > 20) { n++ ; sum += person.getAge() ; } } if (n > 0) { average = sum / n ; }

#DV13LBDS @JosePaumard

select avg(age) from Person where age > 20

… it does not have to be like that !

This is a description of the result

#DV13LBDS @JosePaumard

select avg(age) from Person where age > 20

… it does not have to be like that !

This is a description of the result

In that case, the DB server is free to compute the

result the way it sees fit

© SQL language, 1974

#DV13LBDS @JosePaumard

Person age age > 20 sum

1st step : mapping

map

#DV13LBDS @JosePaumard

Person age age > 20 sum

1st step : mapping

Mapping :

- takes a list of a given type

- gives another list of a different type

- same number of elements

map

#DV13LBDS @JosePaumard

Person age age > 20 sum

2nd step : filtering

filter map

#DV13LBDS @JosePaumard

Person age age > 20 sum

2nd step : filtering

Filtering :

- takes a list of a given type

- gives another list of a the same type

- less elements

filter map

#DV13LBDS @JosePaumard

Person age age > 20 sum

3rd step : reduction

reduce filter map

#DV13LBDS @JosePaumard

Person age age > 20 sum

3rd step : reduction

Reduction : agregation of all the elements

in a single one

Ex : average, sum, min, max, etc…

reduce filter map

#DV13LBDS @JosePaumard

How can I model that ?

#DV13LBDS @JosePaumard

The JDK 7 way

Create an interface to model the mapper…

public interface Mapper<T, V> { public V map(T t) ; }

#DV13LBDS @JosePaumard

public class PersonToAgeMapper implements Mapper<Person, Integer> { public Integer map(Person p) { return p.getAge() ; } }

The JDK 7 way

… and create an implementation …

public interface Mapper<T, V> { public V map(T t) ; }

#DV13LBDS @JosePaumard

Mapper<Person, Integer> mapper = new Mapper<Person, Integer>() { public Integer map(Person p) { return p.getAge() ; } }

The JDK 7 way

… that could be anonymous

public interface Mapper<T, V> { public V map(T t) ; }

#DV13LBDS @JosePaumard

The JDK 7 way

We can do the same for the filtering

public interface Predicate<T> { public boolean filter(T t) ; }

#DV13LBDS @JosePaumard

public class AgePredicate implements Predicate<Integer> { public boolean filter(Integer i) { return i > 20 ; } }

The JDK 7 way

We can do the same for the filtering

public interface Predicate<T> { public boolean filter(T t) ; }

#DV13LBDS @JosePaumard

AgePredicate predicate = new Predicate<Integer>() { public boolean filter(Integer i) { return i > 20 ; } }

The JDK 7 way

We can do the same for the filtering

public interface Predicate<T> { public boolean filter(T t) ; }

#DV13LBDS @JosePaumard

The JDK 7 way

And for the reduction

public interface Reducer<T> { public T reduce(T t1, T t2) ; }

#DV13LBDS @JosePaumard

public class Sum implements Reducer<Integer> { public Integer reduce(Integer i1, Integer i2) { return i1 + i2 ; } }

The JDK 7 way

And for the reduction

public interface Reducer<T> { public T reduce(T t1, T t2) ; }

#DV13LBDS @JosePaumard

Reducer<Integer> reduction = new Reducer<Integer>() { public Integer reduce(Integer i1, Integer i2) { return i1 + i2 ; } }

The JDK 7 way

And for the reduction

public interface Reducer<T> { public T reduce(T t1, T t2) ; }

#DV13LBDS @JosePaumard

The JDK 7 way

So the whole map / filter / reduce looks like this

1) Create 3 interfaces public interface Mapper<T, V> { public V map(T t) ; }

public interface Predicate<T> { public boolean filter(T t) ; }

public interface Reducer<T> { public T reduce(T t1, T t2) ; }

#DV13LBDS @JosePaumard

The JDK 7 way

So the whole map / filter / reduce looks like this

1) Create 3 interfaces

2) Apply the pattern

List<Person> persons = ... ; int sum = persons.map( new Mapper<Person, Integer>() { public Integer map(Person p) { return p.getAge() ; } }) .filter( new Filter<Integer>() { public boolean filter(Integer age) { return age > 20 ; } }) .reduce(0, new Reducer<Integer>() { public Integer recude(Integer i1, Integer i2) { return i1 + i2 ; } } }) ;

#DV13LBDS @JosePaumard

The JDK 7 way

So the whole map / filter / reduce looks like this

1) Create 3 interfaces

2) Apply the pattern

List<Person> persons = ... ; int sum = persons.map( new Mapper<Person, Integer>() { public Integer map(Person p) { return p.getAge() ; } }) .filter( new Filter<Integer>() { public boolean filter(Integer age) { return age > 20 ; } }) .reduce(0, new Reducer<Integer>() { public Integer recude(Integer i1, Integer i2) { return i1 + i2 ; } } }) ;

#DV13LBDS @JosePaumard

The JDK 8 way

#DV13LBDS @JosePaumard

mapper = new Mapper<Person, Integer>() { public Integer map(Person person) { return person.getAge() ; } }

The JDK 8 way

Let’s rewrite our mapper

#DV13LBDS @JosePaumard

mapper = new Mapper<Person, Integer>() { public Integer map(Person person) { // 1 method return person.getAge() ; } }

The JDK 8 way

Let’s rewrite our mapper

#DV13LBDS @JosePaumard

mapper = new Mapper<Person, Integer>() { public Integer map(Person person) { // 1 method return p.getAge() ; } }

The JDK 8 way

mapper = Person person ;

we take a

person p

Let’s rewrite our mapper

#DV13LBDS @JosePaumard

mapper = new Mapper<Person, Integer>() { public Integer map(Person person) { // 1 method return person.getAge() ; } }

The JDK 8 way

mapper = Person person -> ;

and then …

Let’s rewrite our mapper

#DV13LBDS @JosePaumard

mapper = new Mapper<Person, Integer>() { public Integer map(Person person) { // 1 method return person.getAge() ; } }

The JDK 8 way

mapper = Person person -> person.getAge() ;

… return the age of p

Let’s rewrite our mapper

#DV13LBDS @JosePaumard

Let’s rewrite our mapper

mapper = new Mapper<Person, Integer>() { public Integer map(Person person) { // 1 method return person.getAge() ; } }

The JDK 8 way

mapper = Person person -> person.getAge() ;

#DV13LBDS @JosePaumard

Let’s rewrite our mapper

The compiler can recognize this as an implementation of

Mapper

mapper = new Mapper<Person, Integer>() { public Integer map(Person person) { // 1 method return person.getAge() ; } }

The JDK 8 way

mapper = Person person -> person.getAge() ;

#DV13LBDS @JosePaumard

What if …

… there is more than one statement ?

The return has to be explicit

mapper = Person person -> { System.out.println("Mapping " + person) ; return person.getAge() ; }

#DV13LBDS @JosePaumard

What if …

…I have no return value ?

consumer = Person person -> p.setAge(p.getAge() + 1) ;

#DV13LBDS @JosePaumard

What if …

…I have more than one argument ?

Or :

reducer = (int i1, int i2) -> { return i1 + i2 ; }

reducer = (int i1, int i2) -> i1 + i2 ;

#DV13LBDS @JosePaumard

The JDK 8 way

How can the compiler recognize the implementation of

map() ?

mapper = Person person -> person.getAge() ;

#DV13LBDS @JosePaumard

The JDK 8 way

How can the compiler recognize the implementation of

map() ?

1) There’s only one method in Mapper

mapper = Person person -> person.getAge() ;

#DV13LBDS @JosePaumard

The JDK 8 way

How can the compiler recognize the implementation of

map() ?

1) There’s only one method in Mapper

2) Both the parameters and the return types are

compatible

mapper = Person person -> person.getAge() ;

#DV13LBDS @JosePaumard

The JDK 8 way

How can the compiler recognize the implementation of

map() ?

1) There’s only one method in Mapper

2) Both the parameters and the return types are

compatible

3) Thrown exceptions (if any) are compatible

mapper = Person person -> person.getAge() ;

#DV13LBDS @JosePaumard

More lambdas

Writing more lambdas becomes natural :

mapper = Person person -> person.getAge() ; // mapper filter = int age -> age > 20 ; // filter reducer = (int i1, int i2) -> i1 + i2 ; // reducer

#DV13LBDS @JosePaumard

More lambdas

And most of the time, the compiler understands this :

The « parameter types » can be omitted

mapper = person -> person.getAge() ; // mapper filter = age -> age > 20 ; // filter reducer = (i1, i2) -> i1 + i2 ; // reducer

#DV13LBDS @JosePaumard

Just a remark on the reduction

How does it really work ?

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

Reduction

2 examples :

Caveat :

the result is always reproductible in serial

it’s not in parallel

Reducer r1 = (i1, i2) -> i1 + i2 ; // Ok Reducer r2 = (i1, i2) -> i1*i1 + i2*i2 ; // Oooops

#DV13LBDS @JosePaumard

So far

A lambda expression is an alternative

to write instances of anonymous inner classes

#DV13LBDS @JosePaumard

Other syntaxes

Very often one writes

This syntax is also possible :

mapper = person -> person.getAge() ;

mapper = Person::getAge ; // non static method

#DV13LBDS @JosePaumard

Other syntaxes

Other example :

Or :

sum = (i1, i2) -> i1 + i2 ; sum = Integer::sum ; // static method, new !

max = (i1, i2) -> i1 > i2 ? i1 : i2 ; max = Integer::max ; // static method, new !

#DV13LBDS @JosePaumard

Other syntaxes

Other example :

toLower = String::toLowerCase ;

// !!!! NO NO NO !!!! toLowerFR = String::toLowerCase(Locale.FRANCE) ;

#DV13LBDS @JosePaumard

More on the lambdas

#DV13LBDS @JosePaumard

Questions :

What model for a lambda ?

#DV13LBDS @JosePaumard

Questions :

What model for a lambda ?

Can I put a lambda in a variable ?

#DV13LBDS @JosePaumard

Questions :

What model for a lambda ?

Can I put a lambda in a variable ?

Is a lambda an object ?

#DV13LBDS @JosePaumard

Modelization

A lambda is an instance of a « functional interface »

@FunctionalInterface public interface Consumer<T> { public void accept(T t) ; }

#DV13LBDS @JosePaumard

Modelization

A lambda is an instance of a « functional interface »

- only one abstract method (methods from Object dont

count)

- can be annotated by @FunctionalInterface (optional)

@FunctionalInterface public interface Consumer<T> { public void accept(T t) ; }

#DV13LBDS @JosePaumard

Modelization

A lambda is an instance of « functional interface »

@FunctionalInterface public interface Consumer<T> { public void accept(T t) ; public default Consumer<T> chain(Consumer<? super T> other) { Objects.requireNonNull(other); return (T t) -> { accept(t); other.accept(t); }; } }

#DV13LBDS @JosePaumard

Putting a lambda in a variable

Example of a consumer

So :

Consumer<String> c = new Consumer<String>() { @Override public void accept(String s) { System.out.println(s) ; } } ;

Consumer<String> c = s -> System.out.println(s) ;

#DV13LBDS @JosePaumard

Putting a lambda in a variable

Example of a consumer

So :

Consumer<String> c = new Consumer<String>() { @Override public void accept(String s) { System.out.println(s) ; } } ;

Consumer<String> c = s -> System.out.println(s) ;

Question : what is s ?

#DV13LBDS @JosePaumard

Putting a lambda in a variable

Example of a consumer

So :

Consumer<String> c = new Consumer<String>() { @Override public void accept(String s) { System.out.println(s) ; } } ;

Consumer<String> c = s -> System.out.println(s) ;

Answer : the compiler

infers that it is a String

#DV13LBDS @JosePaumard

Putting a lambda in a variable

Side question : can one write this ?

int i = ... ; Consumer<String> c = new Consumer<String>() { @Override public void accept(String s) { System.out.println("i = " + i) ; } } ;

#DV13LBDS @JosePaumard

Putting a lambda in a variable

Side question : can one write this ?

JDK 7 : i should be final

int i = ... ; Consumer<String> c = new Consumer<String>() { @Override public void accept(String s) { System.out.println("i = " + i) ; } } ;

#DV13LBDS @JosePaumard

Putting a lambda in a variable

Side question : can one write this ?

JDK 8 : Yes ! (no final needed)

int i = ... ; Consumer<String> c = new Consumer<String>() { @Override public void accept(String s) { System.out.println("i = " + i) ; } } ;

#DV13LBDS @JosePaumard

Putting a lambda in a variable

But this code …

does not compile

int i = ... ; Consumer<String> c = new Consumer<String>() { @Override public void accept(String s) { System.out.println("i = " + i) ; } } ; i = i + 1 ;

#DV13LBDS @JosePaumard

Putting a lambda in a variable

Because i is an effectively final variable

final int i = ... ; Consumer<String> c = new Consumer<String>() { @Override public void accept(String s) { System.out.println("i = " + i) ; } } ; i = i + 1 ; // Cant modify

#DV13LBDS @JosePaumard

And what about this ?

JDK 7 : this is the anonymous instance

Calling accept() will print « I’m in c »

Consumer<String> c = new Consumer<String>() { @Override public void accept(String s) { System.out.println("this = " + this) ; } public String toString() { return "I’m in c" ; } } ;

#DV13LBDS @JosePaumard

And what about this ?

JDK 8 : no change, calling accept() still prints « I’m in c »

But …

Consumer<String> c = new Consumer<String>() { @Override public void accept(String s) { System.out.println("this = " + this) ; } public String toString() { return "I’m in c" ; } } ;

#DV13LBDS @JosePaumard

And what about this ?

Consumer can also be instanced with a lambda

Here this is the enclosing instance

Consumer<String> c = s -> System.out.println(this) ;

#DV13LBDS @JosePaumard

Questions :

What model for a lambda ?

answer : with a functional interface

Can I put a lambda in a variable ?

answer : yes

Is a lambda an object ?

#DV13LBDS @JosePaumard

Is a lambda an objet ?

Let’s play the game of 7 errors (with only 1 error)

Consumer<String> c = new Consumer<String>() { @Override public void accept(String s) { System.out.println(s) ; } } ;

Consumer<String> c = s -> System.out.println(s) ;

#DV13LBDS @JosePaumard

Is a lambda an objet ?

Let’s play the game of 7 errors (with only 1 error)

Consumer<String> c = new Consumer<String>() { @Override public void accept(String s) { System.out.println(s) ; } } ;

Consumer<String> c = s -> System.out.println(s) ;

#DV13LBDS @JosePaumard

Questions :

What model for a lambda ?

answer : with a functionnal interface

Can I put a lambda in a variable ?

answer : yes

Is a lambda an object ?

answer : no

#DV13LBDS @JosePaumard

Plenty of lambdas :

Java.util.functions

#DV13LBDS @JosePaumard

Java.util.functions

This new package holds the functionnal interfaces

There are 43 of them

#DV13LBDS @JosePaumard

Java.util.functions

Supplier : alone in its kind

Consumer / BiConsumer

Function / BiFunction (UnaryOperator / BinaryOperator)

Predicate / BiPredicate

Plus the primitive types versions

#DV13LBDS @JosePaumard

Supplier

A supplier supplies an object

public interface Supplier<T> { T get() ; }

#DV13LBDS @JosePaumard

Consumer

A consumer just … accepts an object

public interface Consumer<T> { void accept(T t) ; }

Consumer<String> c1 = s -> System.out.println(s) ; Consumer<String> c2 = ... ; Consumer<String> c3 = c1.andThen(c2) ; persons.stream().forEach(c3) ;

#DV13LBDS @JosePaumard

BiConsumer

Takes 2 arguments instead of one

Can be chained

Primitive types :

- ObjIntConsumer

- ObjLongConsumer

- ObjDoubleConsumer

ObjIntConsumer takes an object and an int as arguments

#DV13LBDS @JosePaumard

Function

A function takes an object and returns another one

Can be chained and / or composed

public interface Function<T, R> { R apply(T t) ; }

#DV13LBDS @JosePaumard

BiFunction

A function that takes 2 arguments

Can be chained

Primitive type versions :

- ToIntBiFunction

- ToLongBiFunction

- ToDoubleBiFunction

#DV13LBDS @JosePaumard

UnaryOperator

A UnaryOperator is a Function that operates on one type

Other UnaryOperators :

- IntUnaryOperator

- LongUnaryOperator

- DoubleUnaryOperator

#DV13LBDS @JosePaumard

BinaryOperator

A BinaryOperator is a BiFunction that operates on one type

Other BinaryOperators :

- IntBinaryOperator

- LongBinaryOperator

- DoubleBinaryOperator

IntBinaryOperator takes 2 int, and returns an int

#DV13LBDS @JosePaumard

Predicate

A Predicate takes an object and returns a boolean

Can be negated, composed with and / or

public interface Predicate<T> { boolean test(T t) ; }

#DV13LBDS @JosePaumard

BiPredicate

A BiPredicate takes two object and returns a boolean

public interface BiPredicate<T, U> { boolean test(T t, U u) ; }

#DV13LBDS @JosePaumard

Predicate & BiPredicate

Primitive types :

- IntPredicate

- LongPredicate

- DoublePredicate

Not for BiPredicate

#DV13LBDS @JosePaumard

Questions ?

#DV13LBDS

#DV13LBDS @JosePaumard

Back to the

map / filter / reduce

pattern

#DV13LBDS @JosePaumard

The JDK 7 way

How to apply map / filter / reduce

to List<Person> ?

#DV13LBDS @JosePaumard

The JDK 7 way

How to apply map / filter / reduce

to List<Person> ?

The legal way is to iterate over the elements

and apply the pattern

#DV13LBDS @JosePaumard

The JDK 7 way

How to apply map / filter / reduce

to List<Person> ?

The legal way is to iterate over the elements

and apply the pattern

One can create a helper method

#DV13LBDS @JosePaumard

Applying map to a List

With a helper method, JDK 7

List<Person> persons = new ArrayList<>() ; List<Integer> ages = // ages is a new list Lists.map( persons, new Mapper<Person, Integer>() { public Integer map(Person p) { return p.getAge() ; } } ) ;

#DV13LBDS @JosePaumard

Applying map to a List

With a helper method, JDK 8 & lambdas

List<Person> persons = new ArrayList<>() ; List<Integer> ages = Lists.map( persons, person -> person.getAge() ) ;

#DV13LBDS @JosePaumard

Applying map to a List

With a helper method, JDK 8 & lambdas

List<Person> persons = new ArrayList<>() ; List<Integer> ages = Lists.map( persons, Person::getAge ) ;

#DV13LBDS @JosePaumard

Applying map to a List

Caveats : beware the generics : what about managers ?

We want that to compile !

List<Manager> managers = new ArrayList<>() ; List<Integer> ages = Lists.map( managers, person -> person.getAge() ) ;

#DV13LBDS @JosePaumard

Applying map to a List

Caveats : beware the generics

// in Lists public static <T, V> List<V> map( List<? extends T> list, Mapper<T, V> mapper) { List<V> result = new ArrayList<>() ; for (T t : list) { V v = mapper.map(t) ; result.add(v) ; } return result ; }

#DV13LBDS @JosePaumard

Putting things together

The map / filter / reduce pattern would look like this

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<Integer> ages = Lists.map( persons, p -> p.getAge()) ; List<Integer> agesGT20 = Lists.filter(ages, a -> a > 20) ; int sum = Lists.reduce(agesGT20, (i1, i2) -> i1 + i2) ;

#DV13LBDS @JosePaumard

Putting things together

The map / filter / reduce pattern would look like this

The idea is to push lambdas to the API, and let it apply

them on its content

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<Integer> ages = Lists.map( persons, p -> p.getAge()) ; List<Integer> agesGT20 = Lists.filter(ages, a -> a > 20) ; int sum = Lists.reduce(agesGT20, (i1, i2) -> i1 + i2) ;

#DV13LBDS @JosePaumard

Putting things together

The map / filter / reduce pattern would look like this

Pro : the API can be optimized

without touching the code : great !

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<Integer> ages = Lists.map( persons, p -> p.getAge()) ; List<Integer> agesGT20 = Lists.filter(ages, a -> a > 20) ; int sum = Lists.reduce(agesGT20, (i1, i2) -> i1 + i2) ;

#DV13LBDS @JosePaumard

Putting things together

The map / filter / reduce pattern would look like this

Pro : the API can be optimized

without touching the code

Cons …

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<Integer> ages = Lists.map( persons, p -> p.getAge()) ; List<Integer> agesGT20 = Lists.filter(ages, a -> a > 20) ; int sum = Lists.reduce(agesGT20, (i1, i2) -> i1 + i2) ;

#DV13LBDS @JosePaumard

Putting things together

1) Suppose persons is a really BIG list

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<Integer> ages = Lists.map( persons, p -> p.getAge()) ; List<Integer> agesGT20 = Lists.filter(ages, a -> a > 20) ; int sum = Lists.reduce(agesGT20, (i1, i2) -> i1 + i2) ;

#DV13LBDS @JosePaumard

Putting things together

1) Suppose persons is a really BIG list

2 duplications : ages & agesGT20

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<Integer> ages = Lists.map( persons, p -> p.getAge()) ; List<Integer> agesGT20 = Lists.filter(ages, a -> a > 20) ; int sum = Lists.reduce(agesGT20, (i1, i2) -> i1 + i2) ;

#DV13LBDS @JosePaumard

Putting things together

1) Suppose persons is a really BIG list

2 duplications : ages & agesGT20

What do we do with them ? Send them to the GC

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<Integer> ages = Lists.map( persons, p -> p.getAge()) ; List<Integer> agesGT20 = Lists.filter(ages, a -> a > 20) ; int sum = Lists.reduce(agesGT20, (i1, i2) -> i1 + i2) ;

#DV13LBDS @JosePaumard

Putting things together

2) Suppose the algorithms to compute the map / filter /

reduce are optimal

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<Integer> ages = Lists.map( persons, p -> p.getAge()) ; List<Integer> agesGT20 = Lists.filter(ages, a -> a > 20) ; int sum = Lists.reduce(agesGT20, (i1, i2) -> i1 + i2) ;

#DV13LBDS @JosePaumard

Putting things together

2) Suppose the algorithms to compute the map / filter /

reduce are optimal

… but I need to go even faster !

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<Integer> ages = Lists.map( persons, p -> p.getAge()) ; List<Integer> agesGT20 = Lists.filter(ages, a -> a > 20) ; int sum = Lists.reduce(agesGT20, (i1, i2) -> i1 + i2) ;

#DV13LBDS @JosePaumard

Putting things together

2) Suppose the algorithms to compute the map / filter /

reduce are optimal

Only solution : go parallel !

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<Integer> ages = Lists.map( persons, p -> p.getAge()) ; List<Integer> agesGT20 = Lists.filter(ages, a -> a > 20) ; int sum = Lists.reduce(agesGT20, (i1, i2) -> i1 + i2) ;

#DV13LBDS @JosePaumard

Putting things together

2) Suppose we want to go parallel

ages & agesGT20 would better be concurrent aware !

Because they will be accessed concurrently

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<Integer> ages = Lists.map( persons, p -> p.getAge()) ; List<Integer> agesGT20 = Lists.filter(ages, a -> a > 20) ; int sum = Lists.reduce(agesGT20, (i1, i2) -> i1 + i2) ;

#DV13LBDS @JosePaumard

Putting things together

3) Suppose we have a allMatch() reducer

allMatch is true if all the names are shorter than 20 chars

let’s see a possible implementation of allMatch()

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<String> names = Lists.map(persons, p -> p.getName()) ; boolean allMatch = Lists.allMatch(names, n -> n.length() < 20) ;

#DV13LBDS @JosePaumard

How could one write allMatch ?

Here is a basic implementation of allMatch

public static <T> boolean allMatch( List<? extends T> list, Filter<T> filter) { for (T t : list) { if (!filter.filter(t)) { return false ; } } return true ; }

#DV13LBDS @JosePaumard

How could one write allMatch ?

Here is a basic implementation of allMatch

public static <T> boolean allMatch( List<? extends T> list, Filter<T> filter) { for (T t : list) { if (!filter.filter(t)) { return false ; } } return true ; }

No need to iterate

over the whole list

#DV13LBDS @JosePaumard

How could one write allMatch ?

Here is a basic implementation of allMatch

public static <T> boolean allMatch( List<? extends T> list, Filter<T> filter) { for (T t : list) { if (!filter.filter(t)) { return false ; } } return true ; }

But…

#DV13LBDS @JosePaumard

Putting things together

When we apply the allMatch() reducer…

… the list names has already been evaluated !

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<String> names = Lists.map(persons, p -> p.getName()) ; boolean allMatch = Lists.allMatch(names, n.length() < 20) ;

#DV13LBDS @JosePaumard

Putting things together

When we apply the allMatch() reducer…

… the list names has already been evaluated !

We lost a big opportunity for optimization !

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<String> names = Lists.map(persons, p -> p.getName()) ; boolean allMatch = Lists.allMatch(names, n.length() < 20) ;

#DV13LBDS @JosePaumard

Putting things together

When we apply the allMatch() reducer…

… we should have wait to apply the filter

A good way to do that : apply the filter step lazily !

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<String> names = Lists.map(persons, p -> p.getName()) ; boolean allMatch = Lists.allMatch(names, n.length() < 20) ;

#DV13LBDS @JosePaumard

Conclusion

Pro : 1

Cons : 3 (at least)

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<Integer> ages = Lists.map( persons, p -> p.getAge()) ; List<Integer> agesGT20 = Lists.filter(ages, a -> a > 20) ; int sum = Lists.reduce(agesGT20, (i1, i2) -> i1 + i2) ;

#DV13LBDS @JosePaumard

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<Integer> ages = Lists.map( persons, p -> p.getAge()) ; List<Integer> agesGT20 = Lists.filter(ages, a -> a > 20) ; int sum = Lists.reduce(agesGT20, (i1, i2) -> i1 + i2) ;

Conclusion

Pro : 1

Cons : 3 (at least)

#DV13LBDS @JosePaumard

Conclusion

And the same goes for this one

// applying the map / filter / reduce pattern List<Person> persons = ... ; List<Integer> ages = persons.map(p -> p.getAge()) ; List<Integer> agesGT20 = ages.filter(a -> a > 20) ; int sum = agesGT20.reduce(ages, (i1, i2) -> i1 + i2) ;

#DV13LBDS @JosePaumard

What about « in place » operations ?

Not possible for the map step, because the type of the list

changes

Could be evaluated for the filter, with concurrency issues

Doesnt make sense for the reduction

#DV13LBDS @JosePaumard

Conclusion (again)

We need a new concept to handle BIG lists efficiently

#DV13LBDS @JosePaumard

Conclusion (again)

We need a new concept to handle BIG lists efficiently

The Collection framework is not the right one…

#DV13LBDS @JosePaumard

Conclusion (again)

We need a new concept to handle BIG lists efficiently

The Collection framework is not the right one

We need something else !

#DV13LBDS @JosePaumard

So what pattern

to choose ?

#DV13LBDS @JosePaumard

Introduction

Putting map / filter / reduce methods on Collection

would have led to :

And even if it doesnt lead to viable patterns,

it is still a pleasant way of writing things

// map / filter / reduce pattern on collections int sum = persons .map(p -> p.getAge()) .filter(a -> a > 20) .reduce(0, (a1, a2) -> a1 + a2) ;

#DV13LBDS @JosePaumard

Introduction

Let’s keep the same kind of pattern and add a stream()

// map / filter / reduce pattern on collections int sum = persons.stream() .map(p -> p.getAge()) .filter(a -> a > 20) .reduce(0, (a1, a2) -> a1 + a2) ;

#DV13LBDS @JosePaumard

Introduction

Collection.stream() returns a Stream : new interface

New interface = our hands are free !

// map / filter / reduce pattern on collections int sum = persons.stream() .map(p -> p.getAge()) .filter(a -> a > 20) .reduce(0, (a1, a2) -> a1 + a2) ;

#DV13LBDS @JosePaumard

New Collection interface

So we need a new method on Collection

public interface Collection<E> { // our good old methods Stream<E> stream() ; }

#DV13LBDS @JosePaumard

New Collection interface

Problem : ArrayList doesnt compile anymore…

Something has to be done !

public interface Collection<E> { // our good old methods Stream<E> stream() ; }

#DV13LBDS @JosePaumard

Interfaces

Problem : ArrayList doesnt compile anymore…

Something has to be done !

Something that does not need to change or recompile all

the existing implementations of Collection

#DV13LBDS @JosePaumard

Questions ?

#DV13LBDS

#DV13LBDS @JosePaumard

New interfaces

#DV13LBDS @JosePaumard

Java 8 interfaces

Problem : ArrayList doesnt compile anymore…

Something has to be done !

Something that does not need to change or recompile all

the existing implementations of Collection

Problem : how to add methods to an interface, without

changing any of the implementations ?

#DV13LBDS @JosePaumard

Java 8 interfaces

Problem : how to add methods to an interface, without

changing any of the implementations ?

Solution : change the way interfaces work in Java

#DV13LBDS @JosePaumard

Java 8 interfaces

ArrayList needs to know the implementation of stream()…

public interface Collection<E> { // our good old methods Stream<E> stream() ; }

#DV13LBDS @JosePaumard

Java 8 interfaces

Let’s put it in the interface !

public interface Collection<E> { // our good old methods default Stream<E> stream() { return ... ; } }

#DV13LBDS @JosePaumard

Java 8 interfaces

Let’s introduce default methods in Java

Default methods are about interface evolution

Allows the extension of old interfaces

public interface Collection<E> { // our good old methods default Stream<E> stream() { return ... ; } }

#DV13LBDS @JosePaumard

Default methods

Does it bring multiple inheritance to Java ?

#DV13LBDS @JosePaumard

Default methods

Does it bring multiple inheritance to Java ?

Yes ! But we already have it

#DV13LBDS @JosePaumard

Default methods

Does it bring multiple inheritance to Java ?

Yes ! But we already have it

public class String implements Serializable, Comparable<String>, CharSequence { // ... }

#DV13LBDS @JosePaumard

Default methods

What we have so far is multiple inheritance of type

#DV13LBDS @JosePaumard

Default methods

What we have so far is multiple inheritance of type

What we get in Java 8 is multiple inheritance of behavior

#DV13LBDS @JosePaumard

Default methods

What we have so far is multiple inheritance of type

What we get in Java 8 is multiple inheritance of behavior

What we dont have is multiple inheritance of state

#DV13LBDS @JosePaumard

Default methods

What we have so far is multiple inheritance of type

What we get in Java 8 is multiple inheritance of behavior

What we dont have is multiple inheritance of state

… and this is where the trouble is !

#DV13LBDS @JosePaumard

Default methods

Will we have conflicts ?

#DV13LBDS @JosePaumard

Default methods

Will we have conflicts ?

Oooh yes…

#DV13LBDS @JosePaumard

Default methods

Will we have conflicts ?

Oooh yes…

So we need rules to handle them

#DV13LBDS @JosePaumard

Default methods

public class C implements A, B { // ... }

#DV13LBDS @JosePaumard

Default methods

public class C implements A, B { // ... }

public interface A { default String a() { ... } }

public interface B { default String a() { ... } }

#DV13LBDS @JosePaumard

Default methods

Example #0

Class wins !

No default if an implementation is provided

public class C implements A, B { public String a() { ... } }

public interface A { default String a() { ... } }

public interface B { default String a() { ... } }

#DV13LBDS @JosePaumard

Default methods

Example #1

public class C implements A, B { // ... }

public interface A { default String a() { ... } }

public interface B { default String a() { ... } }

#DV13LBDS @JosePaumard

Default methods

Example #1

Compile time error :

class C inherits unrelated defaults for a() from types A and B

public class C implements A, B { // ... }

public interface A { default String a() { ... } }

public interface B { default String a() { ... } }

#DV13LBDS @JosePaumard

Default methods

Example #2

A is more specific than B : A.a() is chosen

public class C implements A, B { // ... }

public interface A extends B { default String a() { ... } }

public interface B { default String a() { ... } }

#DV13LBDS @JosePaumard

Default methods

Example #2

public class C implements A { // ... }

public interface A extends B { default String a() { ... } }

public interface B { default String a() { ... } }

public class D extends C implements B { // ... }

#DV13LBDS @JosePaumard

Default methods

Example #2

A is still more specific than B : A.a() is chosen

public class C implements A { // ... }

public interface A extends B { default String a() { ... } }

public interface B { default String a() { ... } }

public class D extends C implements B { // ... }

#DV13LBDS @JosePaumard

Default methods

Back to example #1

We can also make an explicit call

public interface A { default String a() { ... } }

public interface B { default String a() { ... } }

public class C implements A, B { public String a() { return B.super.a() ; } }

#DV13LBDS @JosePaumard

3 simple rules

To handle the conflict of multiple inheritance of behavior

#DV13LBDS @JosePaumard

3 simple rules

To handle the conflict of multiple inheritance of behavior

1) Class wins !

#DV13LBDS @JosePaumard

3 simple rules

To handle the conflict of multiple inheritance of behavior

1) Class wins !

2) More specific interfaces wins over less specific

#DV13LBDS @JosePaumard

3 simple rules

To handle the conflict of multiple inheritance of behavior

1) Class wins !

2) More specific interfaces wins over less specific

3) In fact there’s no rule #3

#DV13LBDS @JosePaumard

An example

Everybody who writes an implementation of Iterator

writes this :

public class MyIterator implements Iterator<E> { // some critical business code public void remove() { throw new UnsupportedOperationException("You shouldnt do that") ; } ; }

#DV13LBDS @JosePaumard

An example

Thanks to Java 8 :

No silly implementation of remove() anymore !

public interface Iterator<E> { default void remove() { throw new UnsupportedOperationException("remove") ; } ; }

#DV13LBDS @JosePaumard

Java 8 interfaces

So the concept of « interface » changed in Java 8

public class HelloWorld { // souvenir souvenir public static void main(String[] args) { System.out.println("Hello world!") ; } ; }

#DV13LBDS @JosePaumard

Java 8 interfaces

So the concept of « interface » changed in Java 8

I mean, really

public interface HelloWorld { // souvenir souvenir public static void main(String[] args) { System.out.println("Hello world!") ; } ; }

#DV13LBDS @JosePaumard

Java 8 interfaces

1) Default methods, multiple behavior inheritance

Rules to handle conflicts, solved at compile time

2) Static methods in interfaces

Will bring new patterns and new ways to write APIs

#DV13LBDS @JosePaumard

Where are we ?

1) We have a new syntax

2) We have a new pattern to implement

3) We have new interfaces to keep the backward

compatibily

#DV13LBDS @JosePaumard

Where are we going to ?

1) The Stream API

2) Reductions

3) Performances

4) Collectors

But for now…

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

The Stream API

#DV13LBDS @JosePaumard

What is a Stream

From a technical point of view : a typed interface

« a stream of String »

#DV13LBDS @JosePaumard

What is a Stream

From a technical point of view : a typed interface

Other classes for primitive types :

« a stream of String »

IntStream, LongStream, DoubleStream

#DV13LBDS @JosePaumard

It’s a new notion

It‘ looks like a collection, but…

- It is built on a « source », that can be a collection

- No data needs to be provided at build time

- No limit on what the source can produce

#DV13LBDS @JosePaumard

It’s a new notion

A stream can be built on :

- A collection or an array

- An iterator

- An I/O source

Some of those can be « infinite »

#DV13LBDS @JosePaumard

It’s a new notion

1) A stream doesnt hold any data

It’s just an object on which one can declare operations

Streams are about « specifying computations »

#DV13LBDS @JosePaumard

It’s a new notion

1) A stream doesnt hold any data

2) A stream cant modify its source

Consequence : it can use parallel processing

#DV13LBDS @JosePaumard

It’s a new notion

1) A stream doesnt hold any data

2) A stream cant modify its source

3) A source can be infinite

So we need a way to guarantee that computations

will be conducted in finite time

#DV13LBDS @JosePaumard

It’s a new notion

1) A stream doesnt hold any data

2) A stream cant modify its source

3) A source can be infinite

4) A stream works lazily

Then optimizations can be made among the different

operations

We need a way / convention to trigger the computations

#DV13LBDS @JosePaumard

Is a Stream the same as a collection ?

Answer is no

#DV13LBDS @JosePaumard

Is a Stream the same as a collection ?

Answer is no

A Collection provides means to access the elements one

by one

#DV13LBDS @JosePaumard

Is a Stream the same as a collection ?

Answer is no

A Collection provides means to access the elements one

by one

A Stream does not

#DV13LBDS @JosePaumard

Is a Stream the same as a collection ?

Answer is no

A Collection does not provide any mean to process its

elements with lambdas

#DV13LBDS @JosePaumard

Is a Stream the same as a collection ?

Answer is no

A Collection does not provide any mean to process its

elements with lambdas

A Stream does

#DV13LBDS @JosePaumard

How can we build a stream ?

Many ways…

1) From a collection : method Collection.stream

Collection<String> collection = ... ; Stream<String> stream = collection.stream() ;

#DV13LBDS @JosePaumard

How can we build a stream ?

Many ways…

1) From a collection : method Collection.stream

2) From an array : Arrays.stream(Object [])

Stream<String> stream2 = Arrays.stream(new String [] {"one", "two", "three"}) ;

#DV13LBDS @JosePaumard

How can we build a stream ?

Many ways…

1) From a collection : method Collection.stream

2) From an array : Arrays.stream(Object [])

3) From factory methods in Stream, IntStream, …

Stream<String> stream1 = Stream.of("one", "two", "three") ;

#DV13LBDS @JosePaumard

How can we build a stream ?

Some last patterns

Stream.empty() ; // returns an empty Stream Stream.of(T t) ; // a stream with a single element Stream.generate(Supplier<T> s) ; Stream.iterate(T seed, UnaryOperator<T> f) ;

#DV13LBDS @JosePaumard

How can we build a stream ?

Other ways scattered in the JDK

string.chars() ; // returns a IntStream lineNumberReader.lines() ; // returns a Stream<String> random.ints() ; // return a IntStream

#DV13LBDS @JosePaumard

How can we build a stream ?

Factory methods : a closer look

A stream builder is a consumer

- one sends it elements, that are accepted

- it builds back a stream on the build() call with the

accepted elemts

- it has a life cycle

Stream.build() ; // returns a Stream.Builder

#DV13LBDS @JosePaumard

How can we build a stream ?

And as a last resort : StreamSupport + Spliterator

« This class is mostly for library writers

presenting stream views of data structures;

most static stream methods intended for end

users are in the various Stream classes »

#DV13LBDS @JosePaumard

A 1st example

Back to our map / filter / reduce example

// map / filter / reduce pattern on collections int sum = persons.stream() .map(p -> p.getAge()) .filter(a -> a > 20) .reduce(0, (a1, a2) -> a1 + a2) ;

Build a stream

on a List

#DV13LBDS @JosePaumard

A 1st example

Back to our map / filter / reduce example

// map / filter / reduce pattern on collections int sum = persons.stream() .map(p -> p.getAge()) .filter(a -> a > 20) .reduce(0, (a1, a2) -> a1 + a2) ;

Declare

operations

#DV13LBDS @JosePaumard

A 1st example

Back to our map / filter / reduce example

// map / filter / reduce pattern on collections int sum = persons.stream() .map(p -> p.getAge()) .filter(a -> a > 20) .reduce(0, (a1, a2) -> a1 + a2) ;

Triggers the

computation

#DV13LBDS @JosePaumard

A 1st example

Back to our map / filter / reduce example

// map / filter / reduce pattern on collections int sum = persons.stream() .map(p -> p.getAge()) .filter(a -> a > 20) .reduce(0, (a1, a2) -> a1 + a2) ;

Default value, in case the

stream is empty

#DV13LBDS @JosePaumard

Two types of operations

One can declare operations on a Stream

Two types of operations :

1) Intermediate operations : declarations, processed lazily

ex : map, filter

#DV13LBDS @JosePaumard

Two types of operations

One can declare operations on a Stream

Two types of operations :

1) Intermediate operations : declarations, processed lazily

ex : map, filter

2) Terminal operations : trigger the computations

ex : reduce

#DV13LBDS @JosePaumard

State of a stream

The implementation of Stream has a state :

- SIZED : the number of elements is known

- ORDERED : the order matters (List)

- DISTINCT : all elements are unique (Set)

- SORTED : all elements have been sorted (SortedSet)

#DV13LBDS @JosePaumard

State of a stream

Some operations change that :

- filtering removes the SIZED

- mapping removes DISTINCT and SORTED

#DV13LBDS @JosePaumard

State of a stream

And it allows nice optimizations !

- a HashSet cant have doubles so…

#DV13LBDS @JosePaumard

State of a stream

And it allows nice optimizations !

- a HashSet cant have doubles so…

- distinct() is NOPed on a stream built on a HashSet

#DV13LBDS @JosePaumard

State of a stream

And it allows nice optimizations !

- a HashSet cant have doubles so…

- distinct() is NOPed on a stream built on a HashSet

- A TreeSet is sorted so…

#DV13LBDS @JosePaumard

State of a stream

And it allows nice optimizations !

- a HashSet cant have doubles so…

- distinct() is NOPed on a stream built on a HashSet

- A TreeSet is sorted so…

- sorted() is NOPed on a stream built on a TreeSet

#DV13LBDS @JosePaumard

A 2nd example

Sorting a list of String

List<String> strings = new ArrayList<>() ; // populate the list with strings // then somewhere else in the code : List<String> result = strings.stream() .sorted() .collect(Collector.toList()) ;

#DV13LBDS @JosePaumard

A 2nd example

Sorting a list of String

// then some smart guy changes the implementation SortedSet<String> strings = new TreeSet<>() ; // populate the list with strings // then somewhere else in the code : List<String> result = strings.stream() .sorted() .collect(Collector.toList()) ;

#DV13LBDS @JosePaumard

A 2nd example

Sorting a list of String

In this case, no sorting is required, and executed !

// then some smart guy changes the implementation SortedSet<String> strings = new TreeSet<>() ; // populate the list with strings // then somewhere else in the code : List<String> result = strings.stream() .sorted() .collect(Collector.toList()) ;

#DV13LBDS @JosePaumard

Stateless / statefull operations

Stateless / statefull operations

Some operations are stateless :

It means that they dont need more information than the

one held by their parameters

persons.stream().map(p -> p.getAge()) ;

#DV13LBDS @JosePaumard

Stateless / statefull operations

Stateless / statefull operations

Some operations are stateless :

Some need to retain information :

persons.stream().map(p -> p.getAge()) ;

stream.limit(10_000_000) ; // select the 10M first elements

#DV13LBDS @JosePaumard

Example

Let’s sort an array of String

Random rand = new Random() ; String [] strings = new String[10_000_000] ; for (int i = 0 ; i < strings.length ; i++) { strings[i] = Long.toHexString(rand.nextLong()) ; }

#DV13LBDS @JosePaumard

Example

Let’s sort an array of String

Soooo Java 7…

Random rand = new Random() ; String [] strings = new String[10_000_000] ; for (int i = 0 ; i < strings.length ; i++) { strings[i] = Long.toHexString(rand.nextLong()) ; }

#DV13LBDS @JosePaumard

Example

Let’s sort an array of String

Better ?

Random rand = new Random() ; Stream<String> stream = Stream.generate( () -> Long.toHexString(rand.nextLong()) ) ;

#DV13LBDS @JosePaumard

Example

Let’s sort an array of String

Better !

// Random rand = new Random() ; Stream<String> stream = Stream.generate( () -> Long.toHexString(ThreadLocalRandom.current().nextLong()) ) ;

#DV13LBDS @JosePaumard

Example

Let’s sort an array of String

// other way Stream<String> stream = ThreadLocalRandom .current() .longs() // returns a LongStream .mapToObj(l -> Long.toHexString(l)) ;

#DV13LBDS @JosePaumard

Example

Let’s sort an array of String

// other way Stream<String> stream = ThreadLocalRandom .current() .longs() .mapToObj(Long::toHexString) ;

#DV13LBDS @JosePaumard

Example

Let’s sort an array of String

// other way Stream<String> stream = ThreadLocalRandom .current() .longs() .mapToObj(Long::toHexString) .limit(10_000_000) .sorted() ;

T = 4 ms

#DV13LBDS @JosePaumard

Example

Let’s sort an array of String

// other way Stream<String> stream = ThreadLocalRandom .current() .longs() .mapToObj(Long::toHexString) .limit(10_000_000) .sorted() ; Object [] sorted = stream.toArray() ;

#DV13LBDS @JosePaumard

Example

Let’s sort an array of String

// other way Stream<String> stream = ThreadLocalRandom .current() .longs() .mapToObj(Long::toHexString) .limit(10_000_000) .sorted() ; Object [] sorted = stream.toArray() ;

T = 14 s

#DV13LBDS @JosePaumard

Example

Let’s sort an array of String

// other way Stream<String> stream = ThreadLocalRandom .current() .longs() .mapToObj(Long::toHexString) .limit(10_000_000) .sorted() ; Object [] sorted = stream.toArray() ;

T = 14 s

Intermediate calls !

#DV13LBDS @JosePaumard

More on stream operations

1) There are intermediate and terminal operations

2) A stream is processed on a terminal operation call

#DV13LBDS @JosePaumard

More on stream operations

1) There are intermediate and terminal operations

2) A stream is processed on a terminal operation call

3) Only one terminal operation is allowed

4) It cannot be processed again

If needed another stream should be built on the source

#DV13LBDS @JosePaumard

Parallel Streams

#DV13LBDS @JosePaumard

Optimization

The first optimization (well, laziness was first !) we need is

parallelism

The fork / join enable parallel programming since JDK 7

But writing tasks is hard and does not always lead to better

performances

#DV13LBDS @JosePaumard

Optimization

The first optimization (well, laziness was first !) we need is

parallelism

The fork / join enable parallel programming since JDK 7

But writing tasks is hard and does not always lead to better

performances

Using the parallel stream API is much more secure

#DV13LBDS @JosePaumard

How to build a parallel stream ?

Two patterns

1) Call parallelStream() instead of stream()

2) Call parallel() on an existing stream

Stream<String> s = strings.parallelStream() ;

Stream<String> s = strings.stream().parallel() ;

#DV13LBDS @JosePaumard

Can we decide the # of cores ?

Answer is no

#DV13LBDS @JosePaumard

Can we decide the # of cores ?

Answer is no

But… do we really need it ?

#DV13LBDS @JosePaumard

Is parallelism really that simple ?

Well… yes !

#DV13LBDS @JosePaumard

Is parallelism really that simple ?

Well… yes !

… and no

#DV13LBDS @JosePaumard

Is parallelism really that simple ?

Example 1 :

« returns the 10M first elements of the source »

persons.stream().limit(10_000_000) ;

#DV13LBDS @JosePaumard

Is parallelism really that simple ?

Example 1 :

« returns the 10M first elements of the source »

persons.parallelStream().limit(10_000_000) ;

#DV13LBDS @JosePaumard

Is parallelism really that simple ?

Example 1 :

« returns the 10M first elements of the source »

But how can I track the first 10M of the source on several

cores of my CPU ?

persons.parallelStream().limit(10_000_000) ;

#DV13LBDS @JosePaumard

Is parallelism really that simple ?

Example 1 : performances

Code 1

List<Long> list = new ArrayList<>(10_000_100) ; for (int i = 0 ; i < 10_000_000 ; i++) { list1.add(ThreadLocalRandom.current().nextLong()) ; }

#DV13LBDS @JosePaumard

Is parallelism really that simple ?

Example 1 : performances

Code 2

Stream<Long> stream = Stream.generate(() -> ThreadLocalRandom.current().nextLong()) ; List<Long> list1 = stream.limit(10_000_000).collect(Collectors.toList()) ;

#DV13LBDS @JosePaumard

Is parallelism really that simple ?

Example 1 : performances

Code 3

Stream<Long> stream = ThreadLocalRandom.current().longs(10_000_000).mapToObj(Long::new) ; List<Long> list = stream.collect(Collectors.toList()) ;

#DV13LBDS @JosePaumard

Is parallelism really that simple ?

Example 1 : performances

Serial Parallel

Code 1 (for) 270 ms

Code 2 (limit) 310 ms

Code 3 (longs) 250 ms

#DV13LBDS @JosePaumard

Is parallelism really that simple ?

Example 1 : performances

Serial Parallel

Code 1 (for) 270 ms

Code 2 (limit) 310 ms 500 ms

Code 3 (longs) 250 ms 320 ms

#DV13LBDS @JosePaumard

Is parallelism really that simple ?

Example 2 :

« returns a stream with all the elements of the first stream

followed by all the elements of the second stream »

Stream s3 = Stream.concat(stream1, stream2) ;

#DV13LBDS @JosePaumard

Parallelism

Parallelism implies overhead most of the time

Badly configured parallel operations can lead to unneeded

computations that will slow down the overall process

Unnecessary ordering of a stream will lead to performance

hits

#DV13LBDS @JosePaumard

Back to our sorting example

Parallel version

Stream<String> stream = ... ; // created before the test Object [] sorted = stream.parallel() .sorted() // or not .toArray() ;

#DV13LBDS @JosePaumard

Sorting performances

In fact it’s not that simple

# Serial Parallel Ratio Ratio n.log(n)

10 33 ms 32 ms

100 1 ms 1 ms

1K 2 ms 1 ms

10K 5 ms 7 ms

100K 65 ms 49 ms

1M 540 ms 153 ms

10M 9,7 s 2,2 s

20M 19,1 s 4,78 s

30M 31,0 s 8,13 s

#DV13LBDS @JosePaumard

Sorting performances

In fact it’s not that simple

# Serial Parallel Ratio Ratio n.log(n)

10 33 ms 32 ms 1

100 1 ms 1 ms 1

1K 2 ms 1 ms 2

10K 5 ms 7 ms 0,7

100K 65 ms 49 ms 1,3

1M 540 ms 153 ms 3,5

10M 9,7 s 2,2 s 4,4

20M 19,1 s 4,78 s 4,0

30M 31,0 s 8,13 s 3,8

#DV13LBDS @JosePaumard

Sorting performances

In fact it’s not that simple

# Serial Parallel Ratio Ratio n.log(n)

10 33 ms 32 ms 1 1

100 1 ms 1 ms 1 664

1K 2 ms 1 ms 2 4982

10K 5 ms 7 ms 0,7 26,6K

100K 65 ms 49 ms 1,3 25,6K

1M 540 ms 153 ms 3,5 36,9K

10M 9,7 s 2,2 s 4,4 23,9K

20M 19,1 s 4,78 s 4,0 25,3K

30M 31,0 s 8,13 s 3,8 24,1K

#DV13LBDS @JosePaumard

Questions ?

#DV13LBDS

#DV13LBDS @JosePaumard

Reductions

#DV13LBDS @JosePaumard

What is a reduction

2 kinds of reduction :

1) The reduction

« A reduction operation (also called a fold) takes a

sequence of input elements and combines them

into a single summary result by repeated

application of a combining operation »

#DV13LBDS @JosePaumard

What is a reduction

2 kinds of reduction :

2) The mutable reduction

« A mutable reduction operation accumulates

input elements into a mutable result container,

such as a Collection or StringBuilder, as it

processes the elements in the stream »

#DV13LBDS @JosePaumard

A simple reduction

Sum of ages

// map / filter / reduce pattern on collections int sum = persons.stream() .map(p -> p.getAge()) .filter(a -> a > 20) .reduce(0, (a1, a2) -> a1 + a2) ;

#DV13LBDS @JosePaumard

A simple reduction

It would be nice to be able to write :

But there’s no sum() on Stream<T>

What would be the sense of « adding persons » ?

// map / filter / reduce pattern on collections int sum = persons.stream() .map(p -> p.getAge()) .filter(a -> a > 20) .sum() ;

#DV13LBDS @JosePaumard

A simple reduction

It would be nice to be able to write :

But there’s no sum() on Stream<T>

There’s one on IntStream !

// map / filter / reduce pattern on collections int sum = persons.stream() .map(p -> p.getAge()) .filter(a -> a > 20) .sum() ;

#DV13LBDS @JosePaumard

A simple reduction

2nd version :

Value if persons is an empty list : 0

// map / filter / reduce pattern on collections int sum = persons.stream() .map(Person::getAge) .filter(a -> a > 20) .mapToInt(Integer::intValue) .sum() ;

#DV13LBDS @JosePaumard

A simple reduction

2nd version (even better) :

Value if persons is an empty list : 0

// map / filter / reduce pattern on collections int sum = persons.stream() .mapToInt(Person::getAge) .filter(a -> a > 20) // .mapToInt(Integer::intValue) .sum() ;

#DV13LBDS @JosePaumard

A simple reduction

What about max() and min() ?

How can one chose a default value ?

// map / filter / reduce pattern on collections ....... = persons.stream() .mapToInt(Person::getAge) .filter(a -> a > 20) .max() ;

#DV13LBDS @JosePaumard

Problem with the default value

The « default value » is a tricky notion

#DV13LBDS @JosePaumard

Problem with the default value

The « default value » is a tricky notion

1) The « default value » is the reduction of the empty set

#DV13LBDS @JosePaumard

Problem with the default value

The « default value » is a tricky notion

1) The « default value » is the reduction of the empty set

2) But it’s also the identity element for the reduction

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

Problem with the default value

The « default value » is a tricky notion

1) The « default value » is the reduction of the empty set

2) But it’s also the identity element for the reduction

#DV13LBDS @JosePaumard

Problem with the default value

Problem : max() and min() have no identity element

eg : an element e for which max(e, a) = a

#DV13LBDS @JosePaumard

Problem with the default value

Problem : max() and min() have no identity element

eg : an element e for which max(e, a) = a

0 cant be, max(0, -1) is not -1…

−∞ is not an integer

#DV13LBDS @JosePaumard

Problem with the default value

So what is the default value of max() and min() ?

#DV13LBDS @JosePaumard

Problem with the default value

So what is the default value of max() and min() ?

Answer : there is no default value for max() and min()

#DV13LBDS @JosePaumard

Problem with the default value

So what is the returned value of the max() reduction ?

// map / filter / reduce pattern on collections ....... = persons.stream() .mapToInt(Person::getAge) .filter(a -> a > 20) .max() ;

#DV13LBDS @JosePaumard

Problem with the default value

So what is the returned value of the max() reduction ?

If it’s int, then the default value will be 0…

// map / filter / reduce pattern on collections ....... = persons.stream() .mapToInt(Person::getAge) .filter(a -> a > 20) .max() ;

#DV13LBDS @JosePaumard

Optionals

Since there’s none, we need another notion

// map / filter / reduce pattern on collections OptionalInt optionalMax = persons.stream() .mapToInt(Person::getAge) .filter(a -> a > 20) .max() ;

« there might be no

result »

#DV13LBDS @JosePaumard

Optionals

What can I do with OptionalInt ?

1st pattern : test if it holds a value

OptionalInt optionalMax = ... ; int max ; if (optionalMax.isPresent()) { max = optionalMax.get() ; } else { max = ... ; // decide a « default value » }

#DV13LBDS @JosePaumard

Optionals

What can I do with OptionalInt ?

2nd pattern : read the held value, can get an exception

OptionalInt optionalMax = ... ; // throws NoSuchElementException if no held value int max = optionalMax.getAsInt() ;

#DV13LBDS @JosePaumard

Optionals

What can I do with OptionalInt ?

3rd pattern : read the held value, giving a default value

OptionalInt optionalMax = ... ; // get 0 if no held value int max = optionalMax.orElse(0) ;

#DV13LBDS @JosePaumard

Optionals

What can I do with OptionalInt ?

4th pattern : read the held value, or throw an exception

OptionalInt optionalMax = ... ; // exceptionSupplier will supply an exception, if no held value int max = optionalMax.orElseThrow(exceptionSupplier) ;

#DV13LBDS @JosePaumard

Available optionals

Optional<T>

OptionalInt, OptionalLong, OptionalDouble

#DV13LBDS @JosePaumard

Available reductions

On Stream<T> :

- reduce(), with different parameters

- count(), min(), max()

- anyMatch(), allMatch(), noneMatch()

- findFirst(), findAny()

- toArray()

- forEach(), forEachOrdered()

#DV13LBDS @JosePaumard

Available reductions

On IntStream, LongStream, DoubleStream :

- average()

- summaryStatistics()

#DV13LBDS @JosePaumard

Available reductions

SummaryStatistics is an object that holds :

- Count, Min, Max, Sum, Average

It’s a consumer, so it can be easily extended to compute

other statistics

#DV13LBDS @JosePaumard

Mutable reductions : example 1

Use of the helper class : Collectors

ArrayList<String> strings = stream .map(Object::toString) .collect(Collectors.toList()) ;

#DV13LBDS @JosePaumard

Mutable reductions : example 2

Concatenating strings with a helper

String names = persons .stream() .map(Person::getName) .collect(Collectors.joining()) ;

#DV13LBDS @JosePaumard

Mutable reductions

Common things :

- have a container : Collection or StringBuilder

- have a way to add an element to the container

- have a way to merge two containers (for parallelization)

#DV13LBDS @JosePaumard

Mutable reductions

The general form works with 3 objects :

- a supplier : supplies a new instance of the mutable result

container

Supplier<ArrayList<String>> supplier = () -> new ArrayList<String>() ;

#DV13LBDS @JosePaumard

Mutable reductions

The general form works with 3 objects :

- a supplier : supplies a new instance of the mutable result

container

- an accumulator : takes an partly filled container and

adds an element to it

BiConsumer<ArrayList<String>, ? super String> accumulator = (suppliedList, s) -> suppliedList.add(s) ;

#DV13LBDS @JosePaumard

Mutable reductions

The general form works with 3 objects :

- a supplier : supplies a new instance of the mutable result

container

- an accumulator : takes an partly filled container and

adds an element to it

- a combiner : takes two partly filled containers and

combines them

BiConsumer<ArrayList<String>, ArrayList<String>> combiner = (supplied1, supplied2) -> supplied1.addAll(supplied2) ;

#DV13LBDS @JosePaumard

Mutable reductions : example 1

Putting things together :

ArrayList<String> strings = stream .map(Object::toString) .collect( () -> new ArrayList<String>(), // the supplier (suppliedList, s) -> suppliedList.add(s), // the accumulator (supplied1, supplied2) -> supplied1.addAll(supplied2) // the combiner ) ;

#DV13LBDS @JosePaumard

Mutable reductions : example 1

Putting things together :

ArrayList<String> strings = stream .map(Object::toString) .collect( ArrayList::new, // the supplier ArrayList::add, // the accumulator ArrayList::addAll // the combiner ) ;

#DV13LBDS @JosePaumard

Collectors

#DV13LBDS @JosePaumard

The Collectors class

A rich toolbox (37 methods) for various types of reductions

- counting, minBy, maxBy

- summing, averaging, summarizing

- joining

- toList, toSet

And

- mapping, groupingBy, partionningBy

#DV13LBDS @JosePaumard

The Collectors class

Average, Sum, Count

persons .stream() .collect(Collectors.averagingDouble(Person::getAge)) ;

persons .stream() .collect(Collectors.counting()) ;

#DV13LBDS @JosePaumard

The Collectors class

Concatenating the names in a String

String names = persons .stream() .map(Person::getName) .collect(Collectors.joining(", ")) ;

#DV13LBDS @JosePaumard

The Collectors class

Accumulating in a List, Set

Set<Person> setOfPersons = persons .stream() .collect( Collectors.toSet()) ;

#DV13LBDS @JosePaumard

The Collectors class

Accumulating in a custom collection

TreeSet<Person> treeSetOfPersons = persons .stream() .collect( Collectors.toCollection(TreeSet::new)) ;

#DV13LBDS @JosePaumard

The Collectors class

Getting the max according to a comparator

Bonus : new API to build comparators

Optional<Person> optionalPerson = persons .stream() .collect( Collectors.maxBy( Comparator.comparing(Person::getAge)) ;

#DV13LBDS @JosePaumard

Building comparators

New API to build comparators in a declarative way

Comparator<Person> comp = Comparator.comparing(Person::getLastName) .thenComparing(Person::getFirstName) .thenComparing(Person:getAge) ;

#DV13LBDS @JosePaumard

The Collectors class : mapping

The mapping helper method takes 2 parameter :

- a function, that maps the elements of the stream

- a collector, called a « downstream », that is applied to

the mapped values

#DV13LBDS @JosePaumard

The Collectors class : mapping

Accumulating names in a set

Set<String> set = persons .stream() .collect( Collectors.mapping( Person::getLastName, Collectors.toSet())) ;

#DV13LBDS @JosePaumard

The Collectors class : mapping

Mapping the stream, then accumulating in a collection

TreeSet<String> set = persons .stream() .collect( Collectors.mapping( Person::getLastName, Collectors.toCollection(TreeSet::new)) ) ;

#DV13LBDS @JosePaumard

The Collector API : groupingBy

« Grouping by » builds hash maps

- must explain how the keys are built

- by default the values are put in a list

- may specify a downstream (ie a collector)

#DV13LBDS @JosePaumard

The Collector API : groupingBy

Grouping a list of persons by their age

Map<Integer, List<Person>> map = persons .stream() .collect( Collectors.groupingBy(Person::getAge)) ;

#DV13LBDS @JosePaumard

The Collector API : groupingBy

Grouping a list of persons by their age

Map<Integer, Set<Person>> map = persons .stream() .collect( Collectors.groupingBy( Person::getAge, Collectors.toSet() // the downstream ) ;

#DV13LBDS @JosePaumard

The Collector API : groupingBy

Grouping a list of persons names by their age

Map<Integer, Set<String>> map = persons .stream() .collect( Collectors.groupingBy( Person::getAge, Collectors.mapping( // Person::getLastName, // the downstream Collectors.toSet() // ) ) ;

#DV13LBDS @JosePaumard

The Collector API : groupingBy

Grouping a list of persons names by their age

Map<Integer, TreeSet<String>> map = persons .stream() .collect( Collectors.groupingBy( Person::getAge, Collectors.mapping( Person::getLastName, Collectors.toCollection(TreeSet::new) ) ) ;

#DV13LBDS @JosePaumard

The Collector API : groupingBy

Grouping a list of blah blah blah

TreeMap<Integer, TreeSet<String>> map = persons .stream() .collect( Collectors.groupingBy( Person::getAge, TreeMap::new, Collectors.mapping( Person::getLastName, Collectors.toCollection(TreeSet::new) ) ) ;

#DV13LBDS @JosePaumard

The Collector API : groupingBy

Example : creating an age histogram

Gives the # of persons by age

Map<Integer, Long> map = persons .stream() .collect( Collectors.groupingBy(Person::getAge, Collectors.counting()) ) ;

#DV13LBDS @JosePaumard

The Collector API : partionningBy

Creates a Map<Boolean, …> on a predicate

- the map has 2 keys : TRUE and FALSE

- may specify a downstream

#DV13LBDS @JosePaumard

The Collector API : partionningBy

Creates a Map<Boolean, …> on a predicate

map.get(TRUE) returns the list people older than 20

Map<Boolean, List<Person>> map = persons .stream() .collect( Collectors.partitioningBy(p -> p.getAge() > 20) ) ;

#DV13LBDS @JosePaumard

The Collector API : partionningBy

Can further process the list of persons

Map<Boolean, TreeSet<String>> map = persons .stream() .collect( Collectors.partitioningBy( p -> p.getAge() > 20, Collectors.mapping( Person::getLastName, Collectors.toCollection(TreeSet::new)) ) ) ) ;

#DV13LBDS @JosePaumard

The Collector API : partionningBy

Can further process the list of persons

Map<Boolean, TreeSet<String>> map = persons .stream() .collect( Collectors.partitioningBy( p -> p.getAge() > 20, Collectors.mapping( Person::getLastName, Collectors.toCollection(TreeSet::new)) ) ) ) ;

Partition the persons

on age > 20

#DV13LBDS @JosePaumard

The Collector API : partionningBy

Can further process the list of persons

Map<Boolean, TreeSet<String>> map = persons .stream() .collect( Collectors.partitioningBy( p -> p.getAge() > 20, Collectors.mapping( Person::getLastName, Collectors.toCollection(TreeSet::new)) ) ) ) ;

Gather their names…

#DV13LBDS @JosePaumard

The Collector API : partionningBy

Can further process the list of persons

Map<Boolean, TreeSet<String>> map = persons .stream() .collect( Collectors.partitioningBy( p -> p.getAge() > 20, Collectors.mapping( Person::getLastName, Collectors.toCollection(TreeSet::new)) ) ) ) ;

… in TreeSets

#DV13LBDS @JosePaumard

The Collector API : collectingAndThen

Collect data with a downstream

Then apply a function called a « finisher »

Useful for putting the result in a immutable collection

#DV13LBDS @JosePaumard

The Collector API : collectingAndThen

In this case « Map::entrySet » is a finisher

Set<Map.Entry<Integer, List<Person>>> set = persons .stream() .collect( Collectors.collectingAndThen( Collectors.groupingBy( Person::getAge), // downstream, builds a map Map::entrySet // finisher, applied on the map ) ;

#DV13LBDS @JosePaumard

Questions ?

#DV13LBDS

#DV13LBDS @JosePaumard

Some real examples

#DV13LBDS @JosePaumard

1st example

Optional<Entry<Integer, Long>> opt = movies.stream().parallel() .collect( Collectors.collectingAndThen( Collectors.groupingBy( movie -> movie.releaseYear(), Collectors.counting() ), Map::entrySet ) ) .stream() .max(Map.Entry.comparingByValue()) ;

#DV13LBDS @JosePaumard

1st example

Optional<Entry<Integer, Long>> opt = movies.stream().parallel() .collect( Collectors.collectingAndThen( Collectors.groupingBy( movie -> movie.releaseYear(), Collectors.counting() ), Map::entrySet ) ) .stream() .max(Map.Entry.comparingByValue()) ;

A Stream of movies

#DV13LBDS @JosePaumard

1st example

Optional<Entry<Integer, Long>> opt = movies.stream().parallel() .collect( Collectors.collectingAndThen( Collectors.groupingBy( movie -> movie.releaseYear(), Collectors.counting() ), Map::entrySet ) ) .stream() .max(Map.Entry.comparingByValue()) ;

Building a map

of year / # of movies

#DV13LBDS @JosePaumard

1st example

Optional<Entry<Integer, Long>> opt = movies.stream().parallel() .collect( Collectors.collectingAndThen( Collectors.groupingBy( movie -> movie.releaseYear(), Collectors.counting() ), Map::entrySet ) ) .stream() .max(Map.Entry.comparingByValue()) ;

Then getting the

entry set

#DV13LBDS @JosePaumard

1st example

Optional<Entry<Integer, Long>> opt = movies.stream().parallel() .collect( Collectors.collectingAndThen( Collectors.groupingBy( movie -> movie.releaseYear(), Collectors.counting() ), Map::entrySet ) ) .stream() .max(Map.Entry.comparingByValue()) ;

Then getting the

max by value

#DV13LBDS @JosePaumard

1st example

Optional<Entry<Integer, Long>> opt = movies.stream().parallel() .collect( Collectors.collectingAndThen( Collectors.groupingBy( movie -> movie.releaseYear(), Collectors.counting() ), Map::entrySet ) ) .stream() .max(Map.Entry.comparingByValue()) ;

Returns the

year with the most

movies released

#DV13LBDS @JosePaumard

Some thoughts on parallel

#DV13LBDS @JosePaumard

Going parallel

To ways to do it :

- create a parallel stream up front

- call the parallel() method on a given stream, or

sequential() to go sequential

When a terminal operation is initiated, the operations are

executed in parallel or not, depending on the mode of the

stream

#DV13LBDS @JosePaumard

Things that will go wrong

Some operations, like findAny() dont give reproductible

results in parallel

Changing the source (which is forbidden) can lead to

unpredictable results even if the source is concurrent

aware

#DV13LBDS @JosePaumard

Things that will not go wrong, but…

The parallel processing of a stream has to be freed from

constraints

- ordering is costly, relaxing ordering may lead to better

performances

- Collecting must be concurrent aware

#DV13LBDS @JosePaumard

Conclusion

#DV13LBDS @JosePaumard

Conclusion

Why are lambdas introduced in Java 8 ?

#DV13LBDS @JosePaumard

Conclusion

Why are lambdas introduced in Java 8 ?

Because it’s in the mood !

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard

Conclusion

Why are lambdas introduced in Java 8 ?

Because it’s in the mood !

#DV13LBDS @JosePaumard

Conclusion

Why are lambdas introduced in Java 8 ?

Because it’s in the mood !

Because it allows to write more compact code !

#DV13LBDS @JosePaumard

Compact code is better !

An example of compact code (in C)

#include "stdio.h" main() { int b=0,c=0,q=60,_=q;for(float i=-20,o,O=0,l=0,j,p;j=O*O,p=l*l, (!_--|(j+p>4)?fputc(b?q+(_/3):10,(i+=!b,p=j=O=l=0,c++,stdout)), _=q:l=2*O*l+i/20,O=j-p+o),b=c%q,c<2400;o=-2+b*.05) ; }

http://www.codeproject.com/Articles/2228/Obfuscating-your-Mandelbrot-code

#DV13LBDS @JosePaumard

Compact code is better !

An example of compact code (in C)

#include "stdio.h" main() { int b=0,c=0,q=60,_=q;for(float i=-20,o,O=0,l=0,j,p;j=O*O,p=l*l, (!_--|(j+p>4)?fputc(b?q+(_/3):10,(i+=!b,p=j=O=l=0,c++,stdout)), _=q:l=2*O*l+i/20,O=j-p+o),b=c%q,c<2400;o=-2+b*.05) ; }

http://www.codeproject.com/Articles/2228/Obfuscating-your-Mandelbrot-code

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++ ++ +++++++++++ +++++++++++++++++++++++++++++++++++ +++++++ ++++++++++++++++++++++++++++++++++++ +++++++ +++++++++++++++++++++++++++++++++++ ++++++++ ++++++++++++++++++++++++++++++++++ +++++++ +++++++++++++++++++++++++++++++++ +++++ +++++++++++++++++++++++++++++++++ ++++++ +++++++++++++++++++++++ + +++++ ++++++ +++++++++++++++++++++++ ++ ++++++ ++++++++++++++++++++++ + ++++++ ++++++++++++++++++++++ + ++++++ ++++++++++++++++++++ + + +++++++ ++++++ ++++++++ ++++++++++++++++++++ + + +++++++ ++++++++++++++++++++++ + ++++++ ++++++++++++++++++++++ + ++++++ +++++++++++++++++++++++ ++ ++++++ +++++++++++++++++++++++ + +++++ ++++++ +++++++++++++++++++++++++++++++++ ++++++ +++++++++++++++++++++++++++++++++ +++++ ++++++++++++++++++++++++++++++++++ +++++++ +++++++++++++++++++++++++++++++++++ ++++++++ ++++++++++++++++++++++++++++++++++++ +++++++ +++++++++++++++++++++++++++++++++++ +++++++ ++++++++++++++++++++++++++++++++++++ ++ +++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++ +++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

#DV13LBDS @JosePaumard

Conclusion

Why are lambdas introduced in Java 8 ?

Because it’s in the mood !

Because it allows to write more compact code !

#DV13LBDS @JosePaumard

Conclusion

Why are lambdas introduced in Java 8 ?

Because it brings new and efficient patterns,

that enable easy and safe parallelization,

- needed by modern applications

- needed by API writers

#DV13LBDS @JosePaumard

Conclusion

Java 8 is coming, it’s the biggest update in 15 years

#DV13LBDS @JosePaumard

Conclusion

Java 8 is coming, it’s the biggest update in 15 years

Moving to Java 8 means a lot of work for us developers !

- Self training

- Changing our habits

#DV13LBDS @JosePaumard

Conclusion

Java 8 is coming, it’s the biggest update in 15 years

Moving to Java 8 means a lot of work for us developers !

- Self training

- Changing our habits

- Convincing our bosses (sigh…)

#DV13LBDS @JosePaumard

Conclusion

Java 8 is coming, it’s the biggest update in 15 years

Download the develop preview version on Open JDK site

Release date : 18th march 2014 !

#DV13LBDS @JosePaumard

Conclusion

Java 8 is coming, it’s the biggest update in 15 years

Devoxx openning keynote

Brian Goetz : « Lamda a peek under the hood », Wed

12:00

Paul Sandoz : « In full flow : Java 8 lambdas in the

stream », Wed 14:00

#DV13LBDS @JosePaumard

Conclusion

Java 8 is coming, it’s the biggest update in 15 years

« Java is a blue collar language. It’s not PhD thesis

material but a language for a job » – James Gosling, 1997

#DV13LBDS @JosePaumard

Conclusion

Java 8 is coming, it’s the biggest update in 15 years

« Language features are not a goal unto themselves;

language features are enablers, encouraging or

discouraging certain styles and idioms » – Brian Goetz,

2013

#DV13LBDS @JosePaumard

Conclusion

Java 8 is coming, it’s the biggest update in 15 years

The good news is :

Java is still Java !

#DV13LBDS @JosePaumard

#DV13LBDS @JosePaumard