Atmospheric Correction of Ocean Color RS Observations

Post on 11-Jan-2017

224 views 0 download

Transcript of Atmospheric Correction of Ocean Color RS Observations

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

!Atmospheric Correction of Ocean Color

RS Observations

Menghua Wang

NOAA/NESDIS/STARE/RA3, Room 102, 5200 Auth Rd.Camp Springs, MD 20746, USA

IOCCG Summer Lecture Series, Villefranche-sur-Mer, France, July 2-14, 2012

!"#$%&'()*(+($,-./!"#$%&'"()*"+%#,--.#,"/%#%"(*)01%*.)2+"0.++.)&+3",4543"6,%7.863"9:;!63"%&/"<!!=63

,#>43".&"+.#2"/%#%"(*)0"6,%?@66"A(*)0"1%*.)2+"B!+C"%&/

+)0,")#$,*"/%#%D%+,+4"6)0,"+-./,+"%*,"(*)0"E)F%*/

G)*/)&4"!"#$%&'"()*"1%*.)2+">)&#*.D2#.)&+"(*)0

H)+#/)>+3"*,+,%*>$"%++)>.%#,+3"%&/">)--,%52,+4

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

1. Introduction! Brief history! Basic concept of ocean color measurements! Why need atmospheric correction

2. Radiometry and optical properties! Basic radiometric quantities! Apparent optical properties (AOPs)! Inherent optical properties (IOPs)

3. Optical properties of the atmosphere! Molecular absorption and scattering! Aerosol properties and models

— Non- and weakly absorbing aerosols— Strongly absorbing aerosols (dust, smoke, etc.)

4. Radiative Transfer! Radiative Transfer Equation (RTE)! Successive-order-of-scattering method! Single-scattering approximation

Lecture Outlines (1)

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

5. Atmospheric Correction! Define reflectance and examine the various terms! Sea surface effects! Atmospheric diffuse transmittance! Normalized water-leaving radiance! Single-scattering approximation! Aerosol multiple-scattering effects! Open ocean cases: using NIR bands for atmospheric correction! Coastal and inland waters

— Brief overviews of various approaches— The SWIR-based atmospheric correction

! Examples from MODIS-Aqua measurements

6. Addressing the strongly-absorbing aerosol issue! The issue of the strongly-absorbing aerosols! Some approaches for dealing with absorbing aerosols! Examples of atmospheric correction for dust aerosols using MODIS-Aqua

and CALIPSO data

7. Requirements for future ocean color satellite sensors

8. Summary

Lecture Outlines (2)

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

IOCCG Report #10 at http://www.ioccg.org/reports_ioccg.html“Atmospheric Correction for Remotely-Sensed Ocean ColourProducts”.

Reference citations from my presentation can be found from thereport.

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

1. Introduction! Brief history! Basic concept of ocean color measurements! Why need atmospheric correction

Introduction

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

" Color photographs of the oceans were obtained from spacecraft (Apollo, etc.,1960’s).

" Clarke et al. (1970) showed the systematic measurements of radiance spectra ofsea (ocean color) from aircraft, demonstrated the possibility of detecting thechlorophyll concentration within the ocean upper layers. They also showedatmospheric effects on the measured signals.

" Tyler & Smith (1970) performed field measurements of upward & downwardirradiance spectra in different water bodies. Thereafter, many similar in situ wateroptical measurements.

" Interpretation of in situ reflectance measurements was given in the frame ofradiative transfer by Gordon et al. (1975) and also in terms of optically-significantwater substances by Morel and Prieur (1977) and Smith and Baker (1978).

" Gordon (1978; 1980) developed a single-scattering atmospheric correctionalgorithm for processing the NASA CZCS ocean color data, demonstrating thefeasibility of satellite ocean color remote sensing.

" Advanced atmospheric correction algorithm (Gordon and Wang, 1994) has beendeveloped for various more sophisticated ocean color satellite sensors, e.g.,SeaWiFS, OCTS, MODIS, MERIS, etc., following the successful CZCS proof ofconcept mission.

" In recent years, atmospheric correction effort has been on dealing with morecomplex water properties in coastal and inland waters, as well as strongly-absorbing aerosols.

Brief History

IOCCG Report-10

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Satellite ocean color remote sensing is possible because

" Ocean color (spectral radiance/reflectance) data--water-leaving radiance/reflectance spectra--can be related to waterproperties, e.g., chlorophyll-a concentration. In other words,there exist various relationships between water opticalproperty and water biological / biogeochemical et al.properties.

" It is possible to carry out atmospheric correction for derivingaccurate water radiance/reflectance spectra data from satellitemeasurements.

Satellite Ocean Color Measurements

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction Chesapeake BayLake Taihu

Ocean Color Spectra

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Satellite-Measured Reflectance (Radiance)

!t "( ) = !r "( )Rayleigh!

+ !A "( )Aerosols"#$

+ t "( )t0 "( )Transmittance" #% $%

!w "( )#$ %&N

Ocean" #% $%

Satellite-Measured Ocean Contribution" #%%% $%%%

! "( ) = # L "( ) µ0 F0 "( )

!path "( ) = !r "( ) + !A "( )!a "( )+!ra "( )!"#

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Normalized water-leaving radiance:

Lw !( )"# $%N, nLw !( ) mWcm-2

µm-1 str-1

Normalized water-leaving reflectance:

!w "( )#$ %&N, !wN "( ) unitless

Remote sensing reflectance:

Rrs !( ) = "wN !( ) /# str-1

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Ocean Color Remote Sensing

Sensor-Measured

Blue ocean

“Green” ocean

From H. Gordon

Atmospheric Correction (removing >90% sensor-measured signals)

Calibration (0.5% error in TOA >>>> 5% in surface)

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Ocean Contributions:

Case-1 Waters

10-2

10-1

100

101

400 450 500 550 600 650 700

C = 0.03 mg/m 3

C = 0.10 mg/m 3

C = 0.30 mg/m 3

C = 1.00 mg/m 3

[ !w ("

)]N (

%)

Wavelength (nm)

Case-1 Water: Gordon et al. (1988)

(a)

10-2

10-1

100

101

400 500 600 700 800 900

Sediment WatersYellow-Substance

[!w("

)] N

(%

)

Wavelength (nm)

Examples of Case-2 Water

(b)

Ocean Contributions:

Case-2 Waters

IOCCG Report-10

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Satellite Sensor Measured TOA Reflectance Spectra

10-2

10-1

400 500 600 700 800 900

Case 1, C = 0.1 mg/m 3

Case 2, Sediment DominatedCase 2, Yellow Substance

Wavelength (nm)

TO

A R

efle

cta

nce

!t("

)

(a)

M80 model, #a(865) = 0.1

$0 = 60o, $ = 45o, %& = 90o

IOCCG Report-10

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

The TOA Ocean Contributions

0

10

20

30

40

50

400 500 600 700 800 900

Case 1, C = 0.1 mg/m 3

Case-2, Sediment DominatedCase-2, Yellow Substance

Wavelength (nm)

% o

f T

OA

t!

w( "

)

M80 model, #a(865) = 0.1

$0 = 60o, $ = 45o, %& = 90o

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Ocean TOA Radiance Contributions for Case-1 Waters

10-2

10-1

0

1

400 500 600 700 800 900

Case-1, C = 0.1 mg/m 3

Rayleigh, Black Ocean

Wavelength (nm)

M80 model, !a(865) = 0.1

Ratio "r(#)/"

t(#)

Ratio "path

(#)/"t(#)

"r(#)

"t(#)

$0 = 60o, $ = 45o, %& = 90o

(b)

TO

A R

efle

cta

nce

"t(#

)

Reflectance

RatioIOCCG Report-10

15

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

For a typical Case-1 (open ocean) water:Satellite-Measured water-leaving reflectancecontributions at the TOA are 6.4%, 9.8%, 12.1%,10.8%, 5.5%, and 1.3% at wavelengths of 412, 443,490, 510, 555, and 670 nm.

IOCCG Report-10

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Ocean TOA Radiance Contributions for

Sediment-type Case-2 Waters

10-2

10-1

0

1

400 500 600 700 800 900

Case-2, Sediment

Rayleigh, Black Ocean

Wavelength (nm)

M80 model, !a(865) = 0.1

Ratio "r(#)/"

t(#)

Ratio "path

(#)/"t(#)

"r(#)

"t(#)

$0 = 60o, $ = 45o, %& = 90o

(c)

Re

flecta

nce

Ra

tio V

alu

e

IOCCG Report-10 17

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

For a typical sediment-dominated water:Satellite-Measured water-leaving reflectancecontributions at the TOA are 5.8%, 11.2%, 26.3%,30.6%, 39.0%, 16.4%, 3.7%, and 2.4% at wavelengthsof 412, 443, 490, 510, 555, 670, 765, and 865 nm.

IOCCG Report-10

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

10-2

10-1

0

1

400 500 600 700 800 900

Case-2, Yellow Subs.Rayleigh, Black Ocean

Wavelength (nm)

M80 model, !a(865) = 0.1

Ratio "r(#)/"

t(#)

Ratio "path

(#)/"t(#)

"r(#)

"t(#)

$0 = 60o, $ = 45o, %& = 90o

(d)

TO

A R

efle

cta

nce

"t(#

)R

efle

cta

nce

Ra

tio V

alu

e

Signals are

very small

IOCCG Report-1019

Ocean TOA Radiance Contributions for

Yellow Substance-type Case-2 Waters

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

For a yellow-substance-dominated water:Satellite-Measured water-leaving reflectancecontributions at the TOA are 0.2%, 0.4%, 1.2%, 1.7%,3.6%, 5.3%, 1.2%, and 1.0% at wavelengths of 412,443, 490, 510, 555, 670, 765, and 865 nm.

It is very difficult to do atmospheric correction at theblue bands.

IOCCG Report-10

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

At satellite altitude~90% of sensor-measured signal over ocean

comes from the atmosphere & surface!

Factor of 1:10 from TOA to the surface

• It is crucial to have accurate atmospheric correction andsensor calibrations.

• 0.5% error in atmospheric correction or calibrationcorresponds to possible of ~5% error in the derived oceanwater-leaving radiance.

• We need ~0.1% sensor calibration accuracy.

Atmospheric Correction

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Ocean Color Remote Sensing: Derive theocean water-leaving radiance spectra byaccurately removing the atmospheric andsurface effects.

Ocean properties: e.g., chlorophyll-aconcentration, diffuse attenuation coefficientat 490 nm, can be derived from the oceanwater-leaving radiance spectra.

22

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

References

Austin, R. W. (1974), The remote sensing of spectral radiance from below the ocean surface, in Optical Aspects ofOceanography, edited by N. G. Jerlov and E. S. Nielsen, pp. 317-344, Academic, San Diego, Calif.

Bricaud, A., and A. Morel (1987), Atmospheric correction and interpretation of marine radiances in CZCS imagery: useof a reflectance model, Oceanologica Acta, SP, 33-50.

Clarke, G. K., G. C. Ewing, and C. J. Lorenzen (1970), Spectra of backscattered light from the sea obtained from aircraftas a measure of chlorophyll, Science, 167, 1119-1121.

Gordon, H. R., O. B. Brown, and M. M. Jacobs (1975), Computed relationship between the inherent and apparent opticalproperties of a flat homogeneous ocean, Appl. Opt., 14, 417-427.

Gordon, H. R. (1978), Removal of atmospheric effects from satellite imagery of the oceans, Appl. Opt., 17, 1631-1636.

Gordon, H. R. (1980), A preliminary assessment of the NIMBUS-7 CZCS atmospheric correction algorithm in ahorizontally inhomogeneous atmosphere, in Oceanography from Space, edited by J. F. R. Gower, pp. 281-294,Plenum Press, New York and London.

Gordon, H. R., and D. K. Clark (1981), Clear water radiances for atmospheric correction of coastal zone color scannerimagery, Appl. Opt., 20, 4175-4180.

Gordon, H. R., and A. Morel (1983), Remote assessment of ocean color for interpretation of satellite visible imagery: Areview, 114 pp., Springer-Verlag, New York.

Gordon, H. R., and M. Wang (1994), Retrieval of water-leaving radiance and aerosol optical thickness over the oceanswith SeaWiFS: A preliminary algorithm, Appl. Opt., 33, 443-452.

Morel, A. (1980), In-water and remote measurements of ocean color, Boundary-layer Meteorology, 18, 177-201.

Morel, A., and L. Prieur (1977), Analysis of variations in ocean color, Limnol. Oceanogr., 22, 709-722.

Smith, R. C., and K. S. Baker (1978), The bio-optical state of ocean waters and remote sensing, Limnol. Oceanogr., 23,247-259.

Smith, R. C., and W. H. Wilson (1981), Ship and satellite bio-optical research in the California Bight, in Oceanographyfrom Space, edited by J. F. R. Gower, pp. 281-294, Plenum Press, New York and London.

Tyler, J. E., and R. C. Smith (1970), Measurements of spectral irradiance underwater, 103 pp., Gordon and BreachScience Publishers.

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

2. Radiometry and optical properties! Basic radiometric quantities! Apparent optical properties (AOPs)! Inherent optical properties (IOPs)

Radiometry and Optical Properties

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Radiant Power:

P !( ) = Nhc

!/ t = Energy / t N " # of photons

Radiance is Apparent Optical Property (AOP).Ocean color sensors measure Radiance!

Definition of Radiance L:

L !( ) ="

2P !( )

cos# "$"A

Apparent Optical Properties

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Absorption coefficient a:

a !( ) ="P !( )

P !( )"l

Scattering coefficient b:

Inherent Optical Properties (IOPs) (1)

b !( ) ="P !( )

P !( )"l

Extinction coefficient c:

c !( ) ="P !( )

P !( )"l= a !( ) + b !( )

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Volume Scattering Function:

! "( ) =#2

P $( )

P $( )#%#l

Scattering phase function P:

Inherent Optical Properties (IOPs) (2)

P !( ) =" !( )

b

! "( )4#$ d% =

&P '( )

P '( )&l( b '( )

Definition of Scattering Angle

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

The single scattering albedo is a dimensionlessparameter which represents the percentage of photonsbeing scattered in the single scattering case:

!0 "( ) =b "( )

c "( )

Single-Scattering Albedo

Optical Thickness (e.g., aerosol optical thickness (AOT),Rayleigh optical thickness, cloud optical thickness, etc.)

! "( ) = c #z ,"( )0

Z

$ d #z

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

3. Optical properties of the atmosphere! Molecular absorption and scattering! Aerosol properties and models

— Non- and weakly absorbing aerosols— Strongly absorbing aerosols (dust, smoke, etc.)

Optical Properties of the Atmosphere

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Molecular (Rayleigh) Scattering

" The scattering of air molecules is purely electric dipole incharacter.

" The scattering phase function is symmetry, i.e., equalamounts of radiance are scattered into the forward andbackward directions.

" The amount of scattered radiance varies nearly as theinverse fourth power of wavelength (blue sky).

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Molecular (Rayleigh) Scattering

Rayleigh Phase Function: Pr !( ) "1+ cos2!

The Rayleigh optical thickness is (Hansen & Travis, 1974):

! r ",P0( ) = 0.008569"#4 1+ 0.0113"#2+ 0.00013"#4( )

P0 is the standard atmospheric pressure of 1013.25 hPa, andfor a pressure P,

! r ",P( ) = ! r ",P0( )P

P0

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Atmospheric Pressure

Variation

Usually, it is within~±3%

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Haze C Aerosol Model

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Shettle and Fenn (1979)Aerosol Models

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Aerosol Optical Property

The complex refractive index of aerosol particles is:m = mr - i mi,

mr is the real refractive index, e.g., ~1.33 for water in the visible,and mi the index related to particle absorption.

" Aerosol particles can be characterized with particle sizedistribution and particle refractive index.

" Given the size distribution, refractive index of the individualparticles, and assuming that the particles are spherical,aerosol optical properties can be computed using the Mietheory. These properties are:• The scattering phase function P(!)

• The single scattering albedo "0

• The extinction coefficient c

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Aerosol Phase Function

Aerosol Optical Thickness

Shettle and Fenn (1979)Aerosol Models

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

! a "( )

! a "0( )=

"0

"#$%

&'() " ,"0( )

) ","0( ) = ln! a "( )! a "0( )

#

$%&

'(ln

"0

"#$%

&'(

The Ångström Exponent # (particle size)

Small aerosol particle size has large # value, while largeparticle has small # value.

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

g =1

2cos!P !( )

0

"

# sin!d! =1

2µ P µ( )

$1

1

# dµ

The Asymmetry Parameter g (phase function)

The value of g ranges between -1 for entirely backscatteredlight to +1 for entirely forward-scattered light. Generally, g = 0indicates scattering direction evenly distributed betweenforward and backward directions, e.g., isotropic scattering.

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Shettle and Fenn (1979) aerosol models used (12 models):Oceanic with relative humidity (RH) of 99%Maritime with RH of 50%, 70%, 90%, and 99%Coastal with RH of 50%, 70%, 90%, and 99%Tropospheric with RH of 50%, 90%, and 99%

Other models from AERONET measurements (Ahmad et al., 2010)

Aerosol Models

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Characteristics of the Aerosol Models

Aerosol Model Single Scattering Albedo a(865)

Asymmetry Parameter g

Ångström Exponent (510, 865)

Oceanic! 1.0 0.724-0.840 -0.087~ -0.016

Maritime! 0.982-0.999 0.690-0.824 0.09-0.50

Coastal!! 0.976-0.998 0.682-0.814 0.23-0.76

Tropospheric! 0.930-0.993 0.603-0.769 1.19-1.53

Urban! 0.603-0.942 0.634-0.778 0.85-1.14

Dust!!! 0.836-0.994 0.662-0.763 0.29-0.36

! Shettle and Fenn (1979) aerosol models. !!Gordon and Wang (1994) !!! Shettle (1984) and Moulin et al. (2001).

Strongly-absorbing aerosols

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

4. Radiative Transfer! Radiative Transfer Equation (RTE)! Successive-order-of-scattering method! Single-scattering approximation

Radiative Transfer

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

The RTE is simply an accounting for the changes in radiancealong a path.

First, attenuation produces a loss:

L + !L =P + !P

!A!"=

P 1# c!l( )

!A!"

The Radiative Transfer Equation (RTE)

dL !̂( )dl

= "c L !̂( )

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Second, scattering produces a gain:

dL !̂( )dl

= " ˆ#! $ !̂( )#%& L ˆ#!( )d% ˆ#!( )

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

The RTE:

dL !̂( )dl

= "cL !̂( ) + # ˆ$! % !̂( )$&' L ˆ$!( )d& ˆ$!( )

For the atmosphere-ocean system:

cos!dL z,!,"( )

dz= #c z( )L z,!,"( )

+ $ z, %! , %" &!,"( )%'( L z, %! , %"( )d %'

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

The RTE:

Can be written as:

cos!dL z,! ,"( )

dz= #c z( )L z,! ,"( ) + $ z, %! , %" & ! ,"( )

%'

( L z, %! , %"( )d %'

cos!dL z,! ,"( )

c z( )dz= #L z,! ,"( ) + $

0z( ) P z, %! , %" & ! ,"( )

%'

( L z, %! , %"( )d %'

cos!dL " ,! ,#( )

d"= $L " ,! ,#( ) + %

0"( ) P " , &! , &# ' ! ,#( )

&(

) L " , &! , &#( )d &(

where " = c &z( )0

Z

) d &z is the optical thickness

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

See section from Wang (1991).

Successive-order-of-scattering method

Wang, M. (1991), “Atmospheric Correction of the Second Generation of Ocean ColorSensors,” Ph.D. Dissertation, 135 pp., University of Miami, Coral Gables, Florida, USA.

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

See section from Wang (1991).

Single-Scattering Approximation

!as "( ) =#0 "( )$ "( )

4 cos% cos%0

P &' ,"( ) + r %( ) + r %0( )( )P &+,"( )() *+

,#0 "( )$ "( )P &' ,"( )

Fresnel reflectivity of the surface

Wang, M. (1991), “Atmospheric Correction of the Second Generation of Ocean ColorSensors,” Ph.D. Dissertation, 135 pp., University of Miami, Coral Gables, Florida, USA.

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Aerosol reflectance (radiance)

!"a #( )$ a #( )Pa %&,#( )

AOT can be routinely measured, butNOT Phase Function

For non- and weakly absorbingaerosols, aerosol reflectance: !" a #( )Pa $

%,#( )

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Aerosol Single-Scattering Epsilon

! ","0( ) =#

as"( )

#as

"0( )

=$

a"( )%

a"( ) P

a&

',"( ) + r (( ) + r (0( )( )P

a&

+,"( )[ ]

$a"0( )% a

"0( ) Pa&

',"0( ) + r (( ) + r (0( )( )P

a&

+,"0( )[ ]

Spectral variation of aerosol reflectance

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Characteristics of the Aerosol Models

Aerosol Model Single Scattering Albedo a(865)

Asymmetry Parameter g

Ångström Exponent (510, 865)

Oceanic! 1.0 0.724-0.840 -0.087~ -0.016

Maritime! 0.982-0.999 0.690-0.824 0.09-0.50

Coastal!! 0.976-0.998 0.682-0.814 0.23-0.76

Tropospheric! 0.930-0.993 0.603-0.769 1.19-1.53

Urban! 0.603-0.942 0.634-0.778 0.85-1.14

Dust!!! 0.836-0.994 0.662-0.763 0.29-0.36

! Shettle and Fenn (1979) aerosol models. !!Gordon and Wang (1994) !!! Shettle (1984) and Moulin et al. (2001).

Strongly-absorbing aerosols Non- and weakly-absorbing aerosols

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Aerosol Single-Scattering Epsilon (!0 = 865 nm)

0.6

0.7

0.8

0.9

1

2

300 420 540 660 780 900

O99M50M70M90M99C50C70C90C99T50T90T99! (

", "

0)

Wavelength (nm)

"0 = 865 nm, #

0 = 60

o, # = 45

o, $% = 90

o

(a)

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Epsilon and Aerosol Reflectance

! ","0( ) =#

as"( )

#as

"0( )$ exp c "0 % "( ){ }

"(!, !0) can be computed from two bands (e.g., NIR bands) #as(!).Thus, #as(!) values in other wavelengths (e.g., visible bands) canbe estimated:

!as "( ) = # ","0( ) $ !as "0( )

A simple atmospheric correction (aerosol correction) scheme(Wang and Gordon, 1994)--Single-scattering approximation.

Menghua Wang, IOCCG Lecture Series--Atmospheric Correction

Questions?

Radiance $ ?