ars.els-cdn.com · Web viewSupporting Information Polyhedral TiO 2 particle-based cathode for Li-S...

Post on 09-Aug-2020

1 views 0 download

Transcript of ars.els-cdn.com · Web viewSupporting Information Polyhedral TiO 2 particle-based cathode for Li-S...

Supporting Information

Polyhedral TiO2 particle-based cathode for Li-S

batteries with high volumetric capacity and high

performance in lean electrolyte

Jaehyun Lee and Jun Hyuk Moon*

Department of Chemical and Biomolecular Engineering, Sogang University, Baekbeom-ro

35, Mapo-gu, Seoul, 04107, Republic of Korea

Corresponding author, E-mail: junhyuk@sogang.ac.kr

Fig. S1. (a, b) SEM image of colloidal crystal of a polymer sphere as a template.

Fig. S2. SEM image of (a,b) 3D, ordered, macroporous TiO2 and (c) poly-TiO2 particles.

Fig. S3. Digital images of (a) poly-TiO2 and (b) nc-TiO2 particles. For samples with the same mass, the poly-TiO2 particles occupy a volume almost 6 times smaller than the commercially available nc-TiO2 nanoparticle

Fig. S4. (a) Schematic illustration of secondary particles of poly-TiO2 and nc-TiO2. (b) TEM image of secondary particles of poly TiO2 and nc-TiO2 particles.

Fig. S5. N2 adsorption-desorption isotherms of nc-TiO2

Fig. S6. XRD patterns of poly-TiO2 / S, poly-TiO2 and sulfur

Fig. S7. Digital images and contact angle images of liquid sulfur on (a) poly-TiO2 and (b) nc-TiO2 films

Fig. S8. Digital image after 0, 3, 6, 12 hours of Li PS solution, and the Li PS solution containing the same mass of nc-TiO2 or poly-TiO2. (5 mmol/g Li2S6 solution containing nc-TiO2 and poly-TiO2)

Fig. S9. High-resolution XPS of S 2p spectra of Li PS-adsorbed nc-TiO2. Compared to nc-TiO2, poly-TiO2 shows a higher intensity shoulder in the 166-171 eV range. This may be due to the relatively large specific area of poly-TiO2.

Fig. S10. TGA curves to 600 °C for poly-TiO2 / S at a rate of 10 °C min-1 in air condition.

Fig. S11. the cross-sectional SEM images of sulfur-impregnated poly-TiO2, nc-TiO2 based electrode and elemental mapping of Ti (pink) and S (yellow).

Fig. S12. SEM image of sulfur-impregnated nc-TiO2 and elemental mapping of Ti (pink) and S (yellow).

Fig. S13. (up) CV curves of nc-TiO2 cathode cell (scan rate of 0.1 mV/s), (down) CV curve of nc-TiO2 cathode cell at various scan rates.

Fig. S14. (a) Charge / discharge profiles at various C rates from 0.1 C to 2 C for nc-TiO2 / S cells. (b) Capacity contributions of high-order polysulfide conversion (Q1) and low-order polysulfide conversion (Q2) and the Q2/Q1 ratios at various C rates for the nc-TiO2 / S electrode cells.

Fig. S15. Comparison of kinetics in Li2S deposition conversion on poly-TiO2 and nc-TiO2

electrodes. We compare kinetics through the response of the cathodic peak (Li2S4 to Li2S) current to the scan rate is related to the rate of the sulfur transformation reaction;. According

to the equation D

Li+¿∝ I p2

S2 n2 CLi2 v

¿

where Ip is the peak current, n is the charge transfer number, S is the geometric area of the active electrode, CLi is the concentration of lithium ions in the cathode, and v is the potential scan rate. The slopes of curves are positively correlated to the corresponding lithium ion diffusion. [1]

Fig. S16. Cycling performance of the nc-TiO2 / S electrode under the lean electrolyte conditions of E / S=6 µL / mg and E/S=2.8 µL / mg. (Volume of elec. solution (E), weight of sulfur (s)).

Fig. S17. The specific capacity of the nc-TiO2 electrode cell according to charging / discharging cycles (sulfur loading = 1.8 mg / cm2)

Table S1. Comparison of TiO2 of various morphologies.

Reference DOI TiO2 morphology BET results

10.1039/C6TA06285G [2]

Hierarchical TiO2 spheres Surface area : 116.6 m2 g−1

Pore volume : 0.55 cm3 g−1

10.1021/acs.iecr.9b03393 [3]

TiO2 @ Hollow Carbon Nanoballs Surface area : 155 m2 g−1

Pore volume : 1.37 cm3 g−1

10.1088/0957-4484/27/4/045403 [4]

TiO2 mesoporous spheres Surface area : 152 m2 g−1

Pore volume : 0.3 cm3 g−1

10.1088/1361-6528/aad543 [5]

TiO2 matrix Surface area : 50.73 m2 g−1

Pore volume : 0.33 cm3 g−1

10.1038/srep22990 (2016) [6]

Hierarchical TiO2 spheres Unknown

10.1002/chem.201404686 [7]

TiO2‐Anchored Hollow Carbon Nanofiber

Surface area : 62.5 m2 g−1

Pore volume : 0.126 cm3 g−1

10.1016/j.electacta.2018.11.030 [8]

TiO2 microcubes Surface area : 98.3 m2 g−1

Pore volume : 0.22 cm3 g−1

10.1016/j.jelechem.2014.11.007 [9]

TiO2 nanofibers Surface area : 12.1 m2 g−1

Pore volume : Unknown

Table S2. Compares the capacity values of recent results with an E / S ratio of less than 15.

Reference Cathode E/S ratio (μL/mg)

Specific capacity

Adv. Energy Mater., 2019, 9, 1803477 [10]

Hollow NiCo2O4 Nanofibers 5 Ca. 700 mAh / g (0.1C, after 100 cycles)

ACS Energy Lett.2018, 3, 3, 568 [11]

Hybrid TiS2-polysulfide cathode 5 466 mAh/g (0.2C, after 200 cycles)

Ca. 550 mAh / g 100cycles

Adv. Funct. Mater., 2019, 29(23), 1901051 [12]

Conductive CoOOH sheet 8 Ca. 700 mAh / g (0.2C, after 100 cycles)

Energy Environ. Sci., 2018, 11, 2372 [13]

Stringed “tube on cube” CNT nanohybrid

3 Ca. 500 mAh / g (0.2C, after 100 cycles)

Nat. Commun., 2017, 8, 482 [14]

2D carbon yolk-shell 15 Ca. 850 mAh / g (1C, after 100cycles)

Energy Environ. Sci., 2019, 12, 3144 [15]

C/TiO2–TiN/S electrodes 6.8 534 mAh/g (0.2C, after 400 cycles)

J. Mater. Chem. A, 2020, Advance Article [16]

Na-PB/CNT electrodes 10 690 mAh/g (0.2C, after 200 cycles)

Our work Polyhedral TiO2

2.8 607 mAh / g (1C, after 100 cycles)

6 759 mAh / g (1C, after 100 cycles)

12 790 mAh / g (1C, after 100 cycles)

References

[1] Y. Tao, Y. Wei, Y. Liu, J. Wang, W. Qiao, L. Ling, D. Long, Kinetically-enhanced

polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium–sulfur battery.

Energy Environ. Sci., 9 (2016) 3230-3239.

[2] L. Gao, M. Cao, Y.Q. Fu, Z. Zhong, Y. Shen, M. Wang, Hierarchical TiO2 spheres assisted

with graphene for a high performance lithium–sulfur battery. J. Mater. Chem. A, 4 (2016)

16454-16461.

[3] H. Gu, H. Wang, R. Zhang, T. Yao, T. Liu, J. Wang, X. Han, Y. Cheng, Hollow Carbon

Nanoballs Coupled with Ultrafine TiO2 Nanoparticles as Efficient Sulfur Hosts for Lithium–

Sulfur Batteries. Ind. Eng. Chem. Res., 58 (2019) 18197-18204.

[4] C. Yuan, S. Zhu, H. Cao, L. Hou, J. Lin, Hierarchical sulfur-impregnated hydrogenated

TiO2mesoporous spheres comprising anatase nanosheets with highly exposed (001) facets for

advanced Li-S batteries. Nanotechnology, 27 (2015) 045403.

[5] C. Liang, X. Zhang, Y. Zhao, T. Tan, Y. Zhang, Z. Bakenov, Three-dimensionally ordered

macro/mesoporous TiO2 matrix to immobilize sulfur for high performance lithium/sulfur

batteries. Nanotechnology, 29 (2018) 415401.

[6] Z.-Z. Yang, H.-Y. Wang, L. Lu, C. Wang, X.-B. Zhong, J.-G. Wang, Q.-C. Jiang,

Hierarchical TiO2 spheres as highly efficient polysulfide host for lithium-sulfur batteries.

Scientific Reports, 6 (2016) 22990.

[7] Z. Zhang, Q. Li, S. Jiang, K. Zhang, Y. Lai, J. Li, Sulfur Encapsulated in a TiO2-

Anchored Hollow Carbon Nanofiber Hybrid Nanostructure for Lithium–Sulfur Batteries.

Chem.-Eur. J., 21 (2015) 1343-1349.

[8] J. Ni, L. Jin, M. Xue, J. Zheng, J.P. Zheng, C. Zhang, TiO2 microboxes as effective

polysufide reservoirs for lithium sulfur batteries. Electrochim. Acta, 296 (2019) 39-48.

[9] X.Z. Ma, B. Jin, H.Y. Wang, J.Z. Hou, X.B. Zhong, H.H. Wang, P.M. Xin, S–TiO2

composite cathode materials for lithium/sulfur batteries. J. Electroanal. Chem., 736 (2015)

127-131.

[10] Y.-T. Liu, D.-D. Han, L. Wang, G.-R. Li, S. Liu, X.-P. Gao, Lithium–Sulfur Batteries:

NiCo2O4 Nanofibers as Carbon-Free Sulfur Immobilizer to Fabricate Sulfur-Based

Composite with High Volumetric Capacity for Lithium–Sulfur Battery (Adv. Energy Mater.

11/2019). Adv. Energy Mater., 9 (2019) 1970030.

[11] S.-H. Chung, L. Luo, A. Manthiram, TiS2–Polysulfide Hybrid Cathode with High Sulfur

Loading and Low Electrolyte Consumption for Lithium–Sulfur Batteries. ACS Energy

Letters, 3 (2018) 568-573.

[12] Z.-Y. Wang, L. Wang, S. Liu, G.-R. Li, X.-P. Gao, Conductive CoOOH as Carbon-Free

Sulfur Immobilizer to Fabricate Sulfur-Based Composite for Lithium–Sulfur Battery. Adv.

Funct. Mater., 29 (2019) 1901051.

[13] G. Li, W. Lei, D. Luo, Y. Deng, Z. Deng, D. Wang, A. Yu, Z. Chen, Stringed “tube on

cube” nanohybrids as compact cathode matrix for high-loading and lean-electrolyte lithium–

sulfur batteries. Energy Environ. Sci., 11 (2018) 2372-2381.

[14] F. Pei, L. Lin, D. Ou, Z. Zheng, S. Mo, X. Fang, N. Zheng, Self-supporting sulfur

cathodes enabled by two-dimensional carbon yolk-shell nanosheets for high-energy-density

lithium-sulfur batteries. Nat. Commun., 8 (2017) 482.

[15] Z.-L. Xu, S.J. Kim, D. Chang, K.-Y. Park, K.S. Dae, K.P. Dao, J.M. Yuk, K. Kang,

Visualization of regulated nucleation and growth of lithium sulfides for high energy lithium

sulfur batteries. Energy Environ. Sci., 12 (2019) 3144-3155.

[16] G. Shen, Z. Liu, P. Liu, J. Duan, H.A. Younus, H. Deng, X. Wang, S. Zhang,

Constructing a 3D compact sulfur host based on carbon-nanotube threaded defective Prussian

blue nanocrystals for high performance lithium–sulfur batteries. J. Mater. Chem. A, (2020).