Applications of Geophysical Methods at the DOE Field ... · PDF fileApplications of...

Post on 09-Mar-2018

220 views 4 download

Transcript of Applications of Geophysical Methods at the DOE Field ... · PDF fileApplications of...

Applications of Geophysical Methods at the DOE Field Research Center, Oak Ridge

2002-2004

J.R. SheehanL.P. Beard, W.E. Doll, T.J. Gamey and D.B. Watson

Oak Ridge National Laboratory, Oak Ridge, TN

Methods Employed

• Multielectrode Resistivity• Seismic Refraction Tomography• Geophysical Logging• Azimuthal Resistivity • Crosshole Resistivity

Seismic refraction tomography data acquisition:Profiling geologic setting

• Bison EWG-1 accelerated weight-drop source, stacks of 4-8 shots

• Geometrics Strataview48-channel seismograph, 1/8ms sample interval

• 1-2m receiver spacing• 2-4m shot spacing

Seismic Refraction Tomography with well penetration (area 3)

Multielectrode Resistivity: Used to profile geologic setting and contaminants

Multielectrode resistivity data collection

• 56-electrode Sting Swift system• Data acquired on two lines, 7m apart• On Line 1, acquired one long line at

2m electrode spacing and two lines at 1m electrode spacing

• Both dipole-dipole and Schlumberger configurations tested

Resistivity with well nitrate concentrations (area 3)

Resistivity with velocity overlay

Boreholeand

Surface resultscompared (area 3)0

500

1000

1500

2000

2500

3000

295297299301303305307309

Elevation(m)

Velo

city

(m/s

)

Tomography

Well Log

0

20

40

60

80

100

294296298300302304306

Elevation(m)

Res

istiv

ity(o

hm-m

)

Sting

Well Log

FW-109

Relating Drilling information to tomography result

• Depth of refusal for driven probes correlates well with the 1,000 m/s velocity contour

• Based on augerholes, the bottom of the transition zone (top of bedrock) corresponds to somewhere between the 1,500 m/s and 2,000 m/s velocity contours.

• The cores taken during augering in the vicinity of position 25 m to 35 m confirmed that bedrock in this area is about 15 m deep as estimated from the velocity profile.

• Borehole velocity logs follow the same trend as tomographic results.

Relating borehole geophysics and ground water sampling to resistivity results

• Borehole resistivity logs show the same resistivity trends as surface resistivity results

• Ground water nitrate concentrations correlate well with the surface resistivity results

Area 2 Seismic

Area 2 Seismic

0 10 20 30 40 50 60 70 80Position (m)

80

90

100

Elev

atio

n (m

)

0 10 20 30 40 50 60 70 80 90Position (m)

80

90

100

Elev

atio

n (m

)

Line 1 Line 2

0 10 20 30 40 50 60 70 80 90Position (m)

80

90

100

Elev

atio

n (m

)

0 5 10 15 20 25 30 35 40 45Position (m)

80

85

90

95

100

Elev

atio

n (m

)Line 3

Line 4

Field Research Center Electrical conductivity Profiling

010

2030

Depth

(ft)

0 40 80

120

Conductivity (ms/M)

0 40 80

120

Conductivity (ms/M)

0 40 80

120

Conductivity (ms/M)

0 40 80

120

Conductivity (ms/M)

0 40 80

120

Conductivity (ms/M)

DP12DP13

GW835

Between GW835 and TMW05

TMW05

West East

05

1015

2025

Depth (ft)

0 50

100

150

200

250

Conductivity (ms/M)

0 50

100

150

200

250

Conductivity (ms/M)

0 50

100

150

200

250

Conductivity (ms/M)

0 50

100

150

200

250

Conductivity (ms/M)

FW019 FW015FW021 FW027

WestEast

Data acquired by Geophex Ltd.

Area 3: EM Logging During Flow Test

• 10 wells logged repetitively over a 1-week period with EM-39 borehole conductivity logger

• A dilute KCL solution was injected in well 24 and displaced highly conductive nitrate-rich fluids.

3D: +30% change in resistivity2D: log(NO3 concentration) in mg/l

% changeresistivity log(conc)

Time 014 hrs

3D: +30% change in resistivity2D: log(NO3 concentration) in mg/l

% changeresistivity log(conc)

Time 028 hrs

3D: +30% change in resistivity2D: log(NO3 concentration) in mg/l

% changeresistivity log(conc)

Time 046 hrs

3D: +30% change in resistivity2D: log(NO3 concentration) in mg/l

% changeresistivity log(conc)

Time 062 hrs

3D: +30% change in resistivity2D: log(NO3 concentration) in mg/l

% changeresistivity log(conc)

Time 078 hrs

3D: +30% change in resistivity2D: log(NO3 concentration) in mg/l

% changeresistivity log(conc)

Time 095 hrs

3D: +30% change in resistivity2D: log(NO3 concentration) in mg/l

% changeresistivity log(conc)

Time 119 hrs

3D: +30% change in resistivity2D: log(NO3 concentration) in mg/l

% changeresistivity log(conc)

Time 143 hrs

Time-lapse logging

• Time lapse EM logs showed a steady increase in the zone of increased resistivity as conductive fluids were displaced near the injection well.

• The resistivity pattern agreed with the flow direction and dip of the geological strata.

New Seismic and Resistivity Lines

Line A’-A: along south side of bio-oxidation tanks (F4, F5, F6)

A A’0 5 10 15 20 25 30 35 40 45Position (m)

80

85

90

95

100

Elev

atio

n (m

)

Line B’-B, along north side of bio-denitrification tanks (F1, F2, F3)

B0 5 10 15 20 25 30 35 40 45Position (m)

85

90

95

100

Elev

atio

n (m

)

Line C-C’: along east side of bio-denitrification tank F3, through tanker yard

C C’0 5 10 15 20 25 30 35 40 45

Position (m)

75

80

85

90

95

100

Elev

atio

n (m

)

Line D-D’: along east side of S-3 ponds parking lot

D D’0 10 20 30 40 50 60 70 80 90Position (m)

70

80

90

100

Elev

atio

n (m

)

Low-velocity feature across thee lines

0 10 20 30 40 50 60 70 80 90Position (m)

70

80

90

100

Elev

atio

n (m

)

0 5 10 15 20 25 30 35 40 45Position (m)

75

80

85

90

95

100

Elev

atio

n (m

)

30 40 50 60 70 80 90 100 110 120 130Position (m)

280

290

300

Elev

atio

n (m

)

9175

9200

9225

9250

9275

9300

9325

15700 15750 15800 15850 15900 15950 16000 16050

Admin. Coord. (m)

Red areas on the lines are approximate locations of the low velocity (hole) feature with the yellow line showing the trend.

Location of Seismic Feature

Seismic FeaturePrimary zone of transport

Area 3: 2004 Seismic Refraction Tomography and Resistivity

• Resistivity shows bedrock interface, but no surprises

• Seismic data indicate a possible conduit, oriented along geologic strike, intersecting three profiles at similar depth

Azimuthal Resistivity, FRC Area 2

• To define the preferential flow direction, resistivity was measured repeatedly over a 5-day period during a flow test

• Bromide was injected at ~400 mg/L.• Injection rate: 0.5 L/min for 24 hours

followed by 24h at 3 L/min• Two significant flow directions became

apparent

Surface Resistivity, FRC Area 2

Schlumberger/Wenner inverted resistivity section across proposed bio-remediation test cell

| bio cell | WE | FW 216

Azimuthal Resistivity, FRC Area 2

FW215

TMW7 DP19s

FW212FW214

FW216-1,2

TPB16FW202-2GW835

DP13

29860

29880

29900

29920

29940

29960

51255 51275 51295 51315 51335 51355

Easting (ft)

Nor

thin

g (ft

) Monitored wells

Injection well

Bromide detected

Electrode array

Also saw Bromide in Seep1 and Seep2

Center forazimuthalresistivity

Azimuthal Resistivity, FRC Area 2electrode locations

N

Gravel Trench

Road

Iron Filings

29860

29880

29900

29920

29940

29960

29980

51255 51275 51295 51315 51335 51355 51375

215

216

Azimuthal Resistivity, FRC Area 2

-25

-20

-15

-10

-5

0

5

10

15

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

15

20

25

30

35

40

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

% diff Resistivity

Hour 4

-25

-20

-15

-10

-5

0

5

10

15

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

15

20

25

30

35

40

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

% diff Resistivity

Hour 8

-25

-20

-15

-10

-5

0

5

10

15

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

15

20

25

30

35

40

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

% diff Resistivity

Hour 12

-25

-20

-15

-10

-5

0

5

10

15

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

15

20

25

30

35

40

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

% diff Resistivity

Hour 16

-25

-20

-15

-10

-5

0

5

10

15

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

15

20

25

30

35

40

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

% diff Resistivity

Hour 20

-25

-20

-15

-10

-5

0

5

10

15

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

15

20

25

30

35

40

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

% diff Resistivity

Hour 24

-25

-20

-15

-10

-5

0

5

10

15

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

15

20

25

30

35

40

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

% diff Resistivity

Hour 28

-25

-20

-15

-10

-5

0

5

10

15

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

15

20

25

30

35

40

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

% diff Resistivity

Hour 32

-25

-20

-15

-10

-5

0

5

10

15

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

15

20

25

30

35

40

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

% diff Resistivity

Hour 36

-25

-20

-15

-10

-5

0

5

10

15

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

15

20

25

30

35

40

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

% diff Resistivity

Hour 40.5

-25

-20

-15

-10

-5

0

5

10

15

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

15

20

25

30

35

40

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

% diff Resistivity

Hour 45

-25

-20

-15

-10

-5

0

5

10

15

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

15

20

25

30

35

40

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

% diff Resistivity

Hour 48.5

-25

-20

-15

-10

-5

0

5

10

15

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

15

20

25

30

35

40

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

% diff Resistivity

Hour 55

-25

-20

-15

-10

-5

0

5

10

15

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

15

20

25

30

35

40

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

% diff Resistivity

Hour 73

-25

-20

-15

-10

-5

0

5

10

15

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

15

20

25

30

35

40

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

% diff Resistivity

Hour 98

-25

-20

-15

-10

-5

0

5

10

15

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

15

20

25

30

35

40

015

30

45

60

75

90

105

120

135

150165

180195

210

225

240

255

270

285

300

315

330345

% diff Resistivity

Hour 123

Azimuthal Resistivity Summary

• Two directions showed most change in azimuthal resistivity: N30E, N105E

• These directions align roughly parallel with and orthogonal to the bromide solution flow direction.

Crosshole Resistivity

• Purpose: To test cross-borehole equipment and software preliminary to use at Area 2 bio-remediation test site.

• Data collected August 19-20, 2004• Area 2, between wells 228 and 229

Area 1, between wells 065 and 066

Cross-borehole resistivityArea 1

Cross-borehole resistivityArea 2

Cross-borehole Results

• Inverted crosshole resistivities are reasonable for the geological conditions and groundwater geochemistry.

• Lower resistivities starting at ~5 m depth in Area 1 are most likely the beginning of higher nitrate concentrations.

• The localized high-resistivity feature in the FW 228-229 line is likely a rock or other aquatard, such as clay.

Conclusions• Multielectrode resistivity was effective in imaging

the ionic contamination plume • Refraction tomography successfully mapped the

transition zone between saprolite and bedrock that shows a significant influence on contaminant transport

• The geophysical results were used to help select the location and depth of investigation at Area 3 for field research

• Drilling, borehole geophysics, and ground water sampling verified the geophysical results

Conclusions• Repeated EM conductivity logging during Area 3

flow test provided documentation for propagation of the injected fluid through time

• Azimuthal resistivity data acquired during flow tests (Area 2) indicates preferential pathways

• Crosshole resistivity sections in Areas 1 and 2 are in general agreement with known geology

0 5 10 15 20 25 30 35 40 45Position (m)

80

85

90

95

100

Elev

atio

n (m

)

0 5 10 15 20 25 30 35 40 45Position (m)

85

90

95

100

Elev

atio

n (m

)

0 5 10 15 20 25 30 35 40 45Position (m)

75

80

85

90

95

100

Elev

atio

n (m

)

0 10 20 30 40 50 60 70 80 90Position (m)

70

80

90

100

Elev

atio

n (m

)