AND BACKSTEPPING CONTROL OF AN ELECTRIC€¦ · EMR’15 Lille June 2015 Summer School EMR’15...

Post on 11-Aug-2020

2 views 0 download

Transcript of AND BACKSTEPPING CONTROL OF AN ELECTRIC€¦ · EMR’15 Lille June 2015 Summer School EMR’15...

EMR’15

Lille

June 2015

Summer School EMR’15

“Energetic Macroscopic Representation”

«IBC AND BACKSTEPPING CONTROL OF AN ELECTRIC

VEHICLE»

1 C. DEPATURE, Prof. A. BOUSCAYROL, Dr. W. LHOMME2 Prof. L. BOULON, Prof. P. SICARD

1L2EP, Université Lille1, MEGEVH network,2GREI, Université du Québec à Trois-Rivières, Canada

EMR’15, Lille, June 20152

« IBC and Backstepping control of an EV »

- EMR and Inversion-Based Control (2000) -

system model

assumptions energetic approach

controlrepresentation

inversion

electromechanical thermal

Peugeot 3008 HY4, … DW10, … Ballard FC, …

electrochemical piezo-electric

Stimtac Standalone

• Graphical tool.

• Energy management and real time applications.

• Global stability not guaranted.

EMR’15, Lille, June 20153

« IBC and Backstepping control of an EV »

• Mathematical tool.

• Tracking control. Non linear systems.

• Ensure a stable control.

robotic

Linear IM autonomous vehicle “Red Rover”

chaotic

Duffing oscillator

assumptions energetic approach : stability

criterion

system model stable control

electromécanic

- Backstepping : step by step iterative procedure (1990) -

EMR’15, Lille, June 20154

« IBC and Backstepping control of an EV »

- Objective -

• Deduce a systematic and stable control structure of an EV.

• Real time application.

Based on the Tazzari Zero

EMR’15, Lille, June 20155

« IBC and Backstepping control of an EV »

- Outline -

1. Control structures determination

2. Systematic and stable control structure

3. Real Time validation

4. Perspectives

EMR’15

Lille

June 2015

Summer School EMR’15

“Energetic Macroscopic Representation”

« 1. CONTROL STRUCTURE DETERMINATION »

EMR’15, Lille, June 20157

« IBC and Backstepping control of an EV »

strategy

- EMR and Inversion-Based Control of an EV -

3 cascade loops

3 controlers to be

defined

5 measurementsVbus

ibus

u13,23

i13,23

θd/s

isdq

isdqVsdq

esdq

Tim

Ωgear

Ftract

vev

vev

Fres

vev-refFtract-refTim-ref

Φrd

isd

Φrd-ref

isd-ref

isdq-refVsdq-refu13,23-ref

Bat. Env.

driver requirements

minv

Vbus

ibus

Tim

Ωgear

inverter ind. machine trans. chas.

EMR’15, Lille, June 20158

« IBC and Backstepping control of an EV »

4,3,/

2

1

1

1

sdqrd

ev

isdqsdqeqbusinvondvuuvsdeq

sdq

rdsdsrr

rrd

vresrdsqrw

srg

totev

eiRumKKCTL

idt

d

iML

R

dt

d

FiLR

pMk

Mv

dt

d

- Backstepping control of an EV -

1. External loop control law:

evrefevvve

1error e1

Stability

criterion as

dV1/dt ≤0

1st local control

law

111111

111211

ˆ~

~~

2

1

2

1

dt

de

dt

deMV

dt

d

eMV

Ttot

Ttot

rdsrg

rwtotvresrefevtotprefsq

pMk

LRMFv

dt

dMeki

ev

111

ˆ

System

dteM Ttot 111

modelling error

energetic approach

non linearity

EMR’15, Lille, June 20159

« IBC and Backstepping control of an EV »

2d local control law

3rd local control law

srr

r

rrefrd

rr

rrprefsd

MR

L

Ls

LL

ReRki

22

222

ˆ1

4,3,4,34,3

1/

111 ˆ1 eqisdqrefsdqeqeqeqpsduvondvu

businv LeisLReRkTCKK

um

sdqrd

Deduced stable control structure:

3 cascade loops, 3 well defined controllers

step, noise

EMR’15

Lille

June 2015

Summer School EMR’15

“Energetic Macroscopic Representation”

« 2. SYSTEMATIC AND STABLE

CONTROL STRUCTURE »

EMR’15, Lille, June 201511

« IBC and Backstepping control of an EV »

vev-refFtract-refTim-ref

isdΦrd-ref

isd-ref

isdq-refVsdq-refu13,23-ref

driver requirements

Vbus strategy

minv

- Structure identification -

• IB Control defines a control structure.

• Backstepping defines a stable control.

EMR’15, Lille, June 201512

« IBC and Backstepping control of an EV »

- Controllers structure : Focus on the speed loop -

Backstepping stable controler

PI, PID, Fuzzy, …

s

KM

_

+

vev

vev

Fres

Ftrac

vev-refFtrac-ref

_

+C(t)

+

+

classical IBC controler

PI controler form + direct inversion

s

KM

_

+

vev

vev

Fres

Ftrac

vev-refFtrac-ref

_

+PI

+

+

MK

s+

EMR’15, Lille, June 201513

« IBC and Backstepping control of an EV »

strategy

Vbus

ibus

u13,23

i13,23

θd/s

isdq

isdqVsdq

esdq

Tim

Ωgear

Ftract

vev

vev

Fres

vev-refFtract-refTim-ref

Φrd

isd

Φrd-ref

isd-ref

isdq-refVsdq-refu13,23-ref

DC Env.

driver requirements

minv

inverter ind. machine trans. chas.

- Deduced stable control structure -

Derivative term : Real time validation

EMR’15

Lille

June 2015

Summer School EMR’15

“Energetic Macroscopic Representation”

« 3. REAL TIME APPLICATION »

EMR’15, Lille, June 201515

« IBC and Backstepping control of an EV »

- HIL Setup -

electric

drive

load

drive

load drive

control

mechanical

powertrain

powertrain

control

Tim-ref

Tim-est1

gear

Tim

vev

vev-ref

gear-ref

• Electric drive : 20 kW IM

• Load drive : 20 kW SM

• Sampling time : 100 µs

• Integrator : discret

• Derivative : discret

electicity & Vehicle Platform

dSPACE Control board

Hardware setup

EMR’15, Lille, June 201516

« IBC and Backstepping control of an EV »

- Emulated vehicle velocity -

Implementation using pole placement method :

ref

real

• derivative = anticipation

time response

no delay

EMR’15, Lille, June 201517

« IBC and Backstepping control of an EV »

• Not noise-sensitive (1 speed low-pass filter).

- Emulated vehicle torque -

EMR’15

Lille

June 2015

Summer School EMR’15

“Energetic Macroscopic Representation”

« 4. PERSPECTIVES »

EMR’15, Lille, June 201519

« IBC and Backstepping control of an EV »

itot1

ubus iim2

Tim

gear iim1

its ibus ich1

uch1

Lsc

usc

iLsc

Lfc

ufc

iLfc

uch2

ich2

Rb

iRb

iESS

uRb

- Application on a FC vehicle -

• Real time application on a Fuel Cell / Superpacitor system.

• Definition of stability rules : EMR control formalisation.

• Same Control structures deduced from EMR and backstepping.

• Real time application on the traction: robust and stable.

EMR’15, Lille, June 201522

« IBC and Backstepping control of an EV »

- References -

[1] W. S. Levine, The control handbook, 2nd ed. CRC Press, 2010.

[2] Faa-Jeng Lin, Chih-Kai Chang, and Po-Kai Huang, “FPGA-Based Adaptive Backstepping

Sliding-Mode Control for Linear Induction Motor Drive,” IEEE Trans. Power Electron., vol. 22,

no. 4, pp. 1222–1231, Jul. 2007.

[3] Jing Zhou and Changyun Wen, “Backstepping Control,” in Control and Mechatronics, CRC

Press., pp. 20–1 – 20–21.

[4] C. Dépature, P. Sicard, A. Bouscayrol, W. Lhomme, and L. Boulon, “Comparison of

Backstepping Control and Inversion –Based Control of a Range Extender Electric Vehicle”,

IEEE VPPC, Coimbra (Portugal), 2014.

[5] A. F. Burke, « Batteries and Ultracapacitors for Electric, Hybrid, and Fuel Cell Vehicles »,

Procceedings of the IEEE, vol. 95, no. 4, pp. 806-820, 2007.

[6] Z. Q. Zhu, Y. S. Chen, and D. Howe, “Online optimal flux-weakening control of permanent-

magnet brushless AC drives,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1661–1668, Nov. 2000.

[7] H. K. Khalil, Nonlinear systems, 3 rd. New Jersey : Prentice Hall, 2001.

EMR’15, Lille, June 201523

« IBC and Backstepping control of an EV »

strategy

Vbus

ibus

u13,23

i13,23

θd/s

isdq

isdqVsdq

esdq

Tim

Ωgear

vev-refFtract-refTim-ref

Φrd

isd

Φrd-ref

isd-ref

isdq-refVsdq-refu13,23-ref

Bat.

driver requirements

minv

Ftract

vev

vev

Fres

Env.

- EV Hardware-in-the-Loop Simulation -

Ftract

vev

vev

Fres

Env.

Ωgear-ref

DC.

Ωgear

TL

iL

VL

TL-ref Load drive

EMR’15, Lille, June 201524

« IBC and Backstepping control of an EV »

- Reduced scale FC vehicle HIL simulation -

Control structure deduced from EMR.

Drive cycle

Power distribution

EMR’15, Lille, June 201525

« IBC and Backstepping control of an EV »

dt

dyref

y x

asservisement

yref

+

-

système causale

y x

asservissement

anticipation

yref

+

+

-

système causale

x

asservissement

précommande

+

+

-

système causale

loi de commande

yref

(a) (b) (c)

y

Principe de la (a) commande déduite de la REM, (b) commande par

backstepping, (c) commande Feed Forward d’un système causal.

- Control of a causal system -