An Investigation of GNSS Atomic Clock Behavior at Short ...wegc...An Investigation of GNSS Atomic...

Post on 19-Sep-2020

3 views 0 download

Transcript of An Investigation of GNSS Atomic Clock Behavior at Short ...wegc...An Investigation of GNSS Atomic...

An Investigation of GNSS Atomic Clock Behavior at Short Time 

Intervals

Erin Griggs, Rob Kursinski, Dennis AkosUniversity of Colorado Moog Broad ReachSeptember 5, 2013

Agenda

• Motivation• Approach• Results• Implications

9/16/2013

2

MOTIVATION

9/16/2013

3

Future of Radio Occultation• Utilization of multiple constellations– More occultations– Denser coverage

• Satellite clock contributions are significant to carrier phase– How stable are the GNSS clocks for time intervals of interest for RO?

9/16/2013

4

Source: GNSS, GPS, GLONASS and Galileo, www.kelloggreport.com

Motivation Approach Results Implications

Clock Stability

• Short‐term clock stability necessary for RO– Sample rates of 50 Hz used by current missions– ~100 second occultation duration

• Investigate GLONASS clock performance– Compare with GPS clock results– Time intervals between 0.4 and 100 seconds

9/16/2013

5

To utilize GLONASS satellites for RO, is ground‐based compensation required to eliminate satellite clock instability? 

Motivation Approach Results Implications

Why GLONASS?

• Fully active constellation– 24 operational satellites

• Chipping rate– ½ of GPS (0.511 MHz)– Wider correlation peak– Potentially higher SNR

• FDMA• Less cross‐correlation

9/16/2013

6

Correlation Function

GLONASS

GPS

Motivation Approach Results Implications

APPROACH

9/16/2013

7

Clock Data 

Must isolate the clock variation to the carrier phase of the GNSS signal

• Orbital effects– Interpolated IGS orbital data products

• Receiver clock– Single difference, three‐cornered hat

• Receiver noise– Linear model of white phase noise

9/16/2013

8Motivation Approach Results Implications

Receiver Clock

• Single differencing– Differencing the carrier phase observations between pairs of GNSS satellites

– Removes the mutual receiver clock error

– Does not reveal individual satellite clock behavior

9/16/2013

9Motivation Approach Results Implications

Clock Offsets, PRN 7/PRN 13

9/16/2013

10Motivation Approach Results Implications

Isolating a Single Clock• Three‐cornered hat technique– Statistically isolate carrier phase from a satellite by multiplying two pairs of single differences

– Assumes independence between individual clocks

11

9/16/2013

Motivation Approach Results Implications

How to measure clock stability

12

Source: Standard terminology for fundamental frequency and time metrology (Allan, et al. 1988)

Allan Deviation Lesson

Motivation Approach Results Implications

9/16/2013

Receiver Noise

9/16/2013

13Motivation Approach Results Implications

τ‐3/2

Underlying  satellite clock stability

RESULTS

9/16/2013

14

Data Collected

GPS

ClockGLONASS

ALM SVNPRN7

SVN48 Rb

BlockIIR‐M 11 723

ClockCs

8 38 Cs IIA 21 725 Cs13 43 Rb IIR 10 717 Cs23 60 Rb IIR 22 731 Cs19 59 Rb IIR 20 719 Cs3 33 Cs IIA

• Obtain clock phase by removing– Orbits– Receiver clock– Thermal contribution

9/16/2013

15Motivation Approach Results Implications

Allan Deviation Results

GPS GLONASS

9/16/2013

16Motivation Approach Results Implications

GPS/GLONASS Comparison

9/16/2013

17Motivation Approach Results Implications

IMPLICATIONS

9/16/2013

18

Estimate of Error in Phase Observations

• Linear interpolation of clock phase between two phase measurements 

• Error in interpolated value

• Similar in form to Allan deviation definition

9/16/2013

19Motivation Approach Results Implications

GLONASS Corrections

9/16/2013

20Motivation Approach Results Implications

PRN 3, 30 s correctionsPRN 8, 30 s corrections

PRN 25, 30 s corrections

High rate compensation necessary to match measured GPS performance

Future work• Relate errors in carrier phase to RO data products– Refractivity, temperature, pressure

– Extend mapping from Kursinski et al. (1997)

• Data collection– High gain antenna, stable receiver clock

– Expand to other satellite blocks/constellations

• GPS IIF, Galileo, Compass

– Extend collection duration

• Provide more certainty in longer term results

9/16/2013

21Motivation Approach Results Implications

Acknowledgements

• Dr. Dennis Akos and Dr. Rob Kursinski• Moog Broad Reach• University of Colorado 

9/16/2013

22

Questions

9/16/2013

23

ReferencesAllan D, Hellwig H, Kartaschoff P, Vanier J, Vig J, Winkler G, Yannoni N (1988) 

Standard Terminology for Fundamental Frequency and Time Metrology, Proc. 42nd Annu. Freq. Control Symp., pp.419‐425 1988 :IEEE Press

Hauschild A, Montenbruck O, Steigenberger P (2012) Short‐term analysis of GNSS clocks, GPS Solut. 17(3):295‐307, doi :10.1007/s10291‐012‐0278‐4

Kursinski R et al. (1997) Observing Earth’s atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys. Research, Vol. 102, No.D19 pp.23429‐23465

Rochat P et al. (2005) The Onboard Galileo Rubidium and Passive Maser, Status & Performance, in Proc. IEEE Freq. Contr.  Symp. PTTI Syst. Applicat. Meeting, Vancouver, BC, Canada

Senior K, Beard R, Ray J (2008) Characterization of Periodic Variations in the GPS Satellite Clocks, GPS Solut. 12(3):211‐225

9/16/2013

24

BACK UP SLIDES

9/16/2013

25

Galileo RAFS Allan Deviation

9/16/2013

26Motivation Approach Results Implications

Galileo PHM Allan Deviation

9/16/2013

27Motivation Approach Results Implications

Comparison to Future Constellations

9/16/2013

28Motivation Approach Results Implications

GLONASS Corrections

9/16/2013

29Motivation Approach Results Implications

PRN 3PRN 8

PRN 25

High rate compensation necessary to match GPS and Galileo performance

Galileo RAFS

Galileo PHM

Scintillation Spec