„Modern Furnaces for the AluminiumIndustry...Fluid-Structure-Interaction (FSI) in the field of...

Post on 09-Jul-2020

2 views 0 download

Transcript of „Modern Furnaces for the AluminiumIndustry...Fluid-Structure-Interaction (FSI) in the field of...

Sebastian März (Otto Junker, Lammersdorf)Prof. Dr. Herbert Pfeifer (RWTH Aachen University, Department

of Industrial Furnaces and Heat Engineering)

„Modern Furnaces for theAluminium Industry “

Thursday, December 11st 2014

raw

material

charging

cold rolling

pusher-type

furnace

chamber furnace

artificial ageing

strip miller or

saw and slab

miller

hot rolling

roller hearth furnace solution

heat treatment / quenching

melting furnace

heat treatment of

plate customer

foil rolling mill

continuous strip annealing line

chamber furnace

or

pit-type furnace

slitting or cutting to length separating cutting

chamber furnace / foil coil annealing

processing

customer

stretching

pouring furnace

homogenizing in

pusher-type or

pit-type furnace

Process routes for the production of aluminium flat products basedon secondary raw materials

Convective heat transfer to rolling slabs, (a) impingement flow, (b) gap flow

Flow principles in reheating furnaces for Al slabs, (a) gap flow, (b) mass flow

Furnaces for the heat treatment of Al are dominated by convective heat transfer

Round and flat nozzle fields

Single nozzle

radiant tubes

burnersfan

furnace cover

Pit furnaceBurnerFans

Al-Pit furnace

burners

fans

burners

nozzlesystemmain

flow

pusher-type furnace

slabs

Al-pusher type furnace

Direct gas heated pusher-type furnace for pre-heating and homogenisation of Al-slabs

down ender furnace up ender

Energy and material flows for the determination of the total energy input

Characteristic mass flows of combustion

Energy balances and system boundaries for an industrial furnace

with air preheating

Combustion efficiency

Advantage and characteristics of flameless oxidation

– Development and enhancement of fuel fired burners– main goal: increase of efficiency– use of high off-gas enthalpy for air preheating– challenge: Reduction of high NOx-emission

– FLOX® - Combustionreaction without flame– high inlet velocity (> flame velocity)– recirculation of off-gas– increase of reacting volume– homogenization of temperature in reaction zone– no temperature maxima as in flame-front– significant dedrease of NOx-emission

17

18flame operation mode FLOX®- operation

� flame operation mode for heat-up process

� (blue) stoiciometric gas flame

� power: 8 kW

19

NOx-Reduction in FLOX®- operation mode (Treactor = 840 °C)

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

2,0

0

20

40

60

80

100

120

140

160

180

200

00:00 05:00 10:00 15:00 20:00 25:00

Air

rat

io

con

cen

trat

ion

in p

pm

time in minutes

NOx

LuftzahlAir ratio

NOx

Fans4 x 90 kW

Radiant tubes8 x 200 kW

Inner casing

Nozzle field

Sleeve

Coil

4 Zones

Energy Momentum Turbulence

Simulation of fluid flow

Simulation of structure

Thermal expansion Stress / Strain

1-Way Coupling: small deformations fluid flow structure

Fluid-Structure-Interaction (FSI) in the field of i ndustrial furnace engineering:

Total heat flux and temperature distributioninsulation

Stresses on the radiant heating tube (1)

Intersection between insulation and furnace chamber

high temperature gradient (approx. 100 K)

high stresses

Stresses on the radiant heating tube (2)

different temperatures between thearms of the radiant tube

∆T ≈ 20…40 K

∆T betweenarms ∆T internal side

Stress and strain as a function of circumference

680

690

700

710

720

730

740

0 1 2 3 4

0.0125

0.0126

0.0127

0.0128

0.0129

0.0130

0.0131

0.0132

tem

pera

ture

in °C

position of circumference

stra

in in

mm

/mm

strain ε

temperature

0

20

40

60

80

100

0.010

0.011

0.012

0.013

0.014

0.015

0 1 2 3 4

stre

ss in

MP

a

stra

in in

mm

/mm

position of circumference

strain εstrain ε_theor.stress

Contribution of stresses on the radiant heating tub e

0 20 40 60 80 100

∆T arms

∆T internal side

∆T wall thickness

gravitation

maximum stresses in MPa

Fans4 x 90 kW

Radiant tubes8 x 200 kW

Inner casing

Nozzle field

Sleeve

Coil

4 Zones

Temperatur in K

Fans4 x 90 kW

Radiant tubes8 x 200 kW

Inner casing

Nozzle field

Sleeve

Coil

4 Zones

Volume flow measurement

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9

Tota

ldru

cker

höhu

ng

∆∆ ∆∆ptin

Pa

Volumenstrom V ̇ in m 3/s

nV = 2540 min-1

nV = 1600 min-1 Soll-Kennlinie

eigene Messung

30Ziel dieses Projektes: kontinuierliche Volumenstromerfassung

als Standardmessung in Wärmebehandlungsöfen

Deutliche Abweichungen zwischen Herstellerangaben (Normprüfstand) und Ofen/Versuchsstand

∅1

∅1 15

RM

P

pref

pt

pref

pt

Die Messpositionen des Messkreuzes wurden auf dem

Radius RMP = 0,74 · RME eingebracht.Messkreuz

31

&VV

32

ϕ in °

uED in m/s0

15

30

45

6075 90 105

120

135

150

165

180

195

210

225

240255270285

300

315

330

345

0 0

0

0

10 10

10

10

20 20

20

20

30 30

30

30

φφφφ in °

Strömungsgeschwindigkeit in der Einlaufdüse

als Funktion des Azimuts ϕ(Polarkoordinaten, z = 80, r = 190 mm)

φ ReED · 10-5 nV in min-1

���� 1 0,274 9,38 1600

���� 2 0,188 6,44 1600

3 0,075 2,65 1600

���� 4 0,054 1,85 1600

���� 5 0,188 9,38 2330

Laufraddurchmesser: D2 = 650 mm

33

0,075

kMK = const = 0,76

ϕ = ⋅&

VV

V

Vk

n

RMP = 0,74 · RME

34

36

Casting up to 700 °C

PreHeat / Homogenizationup to 550 °C

Stress Relief up to 550°C

Homogenizationup to 550 °C

Strip Solutionizingup to 550°C

Plate Solutionizingup to 550 °C

Aging up to 200 °C

PreHeat / Homogenizationup to 550 °C

Casting up to 700 °C

Interm. Anneal upto 550 °C

Final. Anneal up to550 °C

Final. Anneal up to550 °C

Technology Today

38

• Coil Annealing Furnaces for Intermediate or Temper Annealing of rolledaluminium coils

• Discontinous process:

• Compiling the batch

• Feeding the Furnace, Start of Heat Treatment

• Heat Treatment

• End of Heat Treatment – Remove the Batch

Stand der Technik - Prozessführung

39

Heat Treatment Process

• …either according to pre determined receipe (Temperature/Time/Fanspeed)

• Or according to measured metal temperature

40

Mathematical model for increase of energy efficiency

•Energy demand and CO 2 emission of coil annealing furnaces

• Reference: aluminium, 20-420°C, energy demand: 185 kWhth/t and 28 kWhel/t, respectively

• At an annual output of 1.8 million tonnes of flat products, at • least 100,000 tonnes of CO2 are released for intermediate • and final annealing purposes in Germany alone.

• The need to purchase CO2 emission rights is to be anticipated as of 2013

Reason enough to start examining the use of saving potentials as early as today!

41

An Aluminium Coil ....

© ELVAL

...looks like a big solid block

A microscopical view shows...

42

Heat up physics for strip coils

That a coil consists ofhundred layers ofAluminium strip

and hundreds of layersof layers of oil and air

which have an insulatingeffect, so that only

90 - 95 % of heatinput takes placevia the face ends

5 - 10 % of heat input takesplace via the circum-

ference

43

Heat up physics for strip coils

High convection heating

from the face ends is more efficient

than

mass flow around the circumference

44

Mathematical model for increase of energy efficiency

•Concept of mathematical modelling

Production planning• puts together most suitable charge lots from stock in “offline” mode

Process management• computes metal temperatures “online” and controls influencing process parameters

Interfacing

• optimizes production planning by introducingempirical process management data

Architektur

PDMLagerbestand Bandbunde

Charge SOLL

(Beladung, Rezept)

energie- oder zeitoptimierte Chargen

Charge IST

(Zeiten, Temperaturen)

Modellrechner

“offline“Modellrechner

“online“Empirische Daten

Prozessparameter SOLL

Prozessparameter IST

MMI

Visualisierung

SPSBedienung

Mathematisches Modell: e) Ergebnisse

46

-2,50%

-1,50%

-0,50%

0,50%

1,50%

2,50%

Δ (gemessene Temperatur - gerechnete Temperatur)/Materialsollwert

an den Orten K(x = b/2 ; y = 0,9 s) und K(x = 0,1 b ; y = 0,1s )

y

x

b

s

Über n=50 Chargen wurde eine Genauigkeit von besser als 1% der Zieltemperatur reproduzierbar erreicht.

47

Mathematical model for increase of energy efficiency

-5

25

55

85

115

145

175

205

235

265

295

325

355

385

0 125 250 375 500 625 750 875 1000 1125 1250

heating time in [min]

tem

pera

ture

in [°

C]

MeasCoil 1

MeasCoil 2

MeasCoil 3

GasOutlet 1

GasOutlet 2

GasOutlet 3

GasInlet 1

GasInlet 2

GasInlet 3

DevCalcCoil 3

•Operating experience:

In foil annealing, the mathematical model developed by OTTO JUNKER equalizes a 50K temperature differenc e to ± 3 K.

48

Mathematical model for increase of energy efficiency

0

250

500

750

1000

1250

1500

1750

2000

2250

2500

2750

3000

3250

0 30 60 90 120 150

increase of average entry temperature in K

carb

on d

ioxi

de s

avin

g in

mt/y

r

20000 mt/yr

30000 mt/yr

50000 mt/yr

80000 mt/yr

120000 mt/yr

170000 mt/yr

230000 mt/yr

•Estimate of potential CO 2 savings•(⅔ from fuel savings, ⅓ from reduced electrical power demand)

49

� Possible Materials � 2xxxAl-Cu

� 6xxxAl-Mg-Si

� 7xxxAl-Zn-Mg

Hig

he

r Te

mp

era

ture

Larger % Alloying Element

50

� Complete Cycle (3 steps) � Heating

� Quenching

� Aging

Hig

he

r Te

mp

era

ture

Time

51

� Complete Cycle (3 steps) � Heating

� Quenching

� Aging

Hig

he

r Te

mp

era

ture

Time

52

� Complete Cycle (3 steps) � Heating

� Quenching

� Aging

Hig

he

r Te

mp

era

ture

Time

53

� Complete Cycle (3 steps) � Heating

� Quenching

� Aging

Hig

he

r Te

mp

era

ture

Time

54

� How to prevent alloying element from segregation?H

igh

er

Tem

pe

ratu

re

Time

55

� How to prevent alloying element from segregation?

…… being fast enough

Hig

he

r Te

mp

era

ture

Time

56

� Speed matters

0

100

200

300

400

500

600

1 10 100 1000

Hig

he

r Te

mp

era

ture

Time

Metal Temperature

57

� Speed matters

0

100

200

300

400

500

600

1 10 100 1000

Hig

he

r Te

mp

era

ture

Time

Slow Cooling

58

� Speed matters

0

100

200

300

400

500

600

1 10 100 1000

Hig

he

r Te

mp

era

ture

Time

Fast Cooling

Slow Cooling

59

� Speed matters – as fast as necessary……….

0

100

200

300

400

500

600

1 10 100 1000

Hig

he

r Te

mp

era

ture

Time

Avoid that line to prevent segregation

60

� Speed matters – as fast as necessary - but as slow as possib le

0

100

200

300

400

500

600

1 10 100 1000

Hig

he

r Te

mp

era

ture

Time

Avoid that line to prevent segregation

61

� Different Alloys – Different Requirements

0

100

200

300

400

500

600

1 10 100 1000

Hig

he

r Te

mp

era

ture

Time

7075

62

� Different Alloys – Different Requirements

0

100

200

300

400

500

600

1 10 100 1000

Hig

he

r Te

mp

era

ture

Time

2017

63

� Different Alloys – Different Requirements

0

100

200

300

400

500

600

1 10 100 1000

Hig

he

r Te

mp

era

ture

Time

2017

64

� Different Alloys – Different Requirements

0

100

200

300

400

500

600

1 10 100 1000

Hig

he

r Te

mp

era

ture

Time

6061

65

� Different Alloys – Different Requirements

0

100

200

300

400

500

600

1 10 100 1000

Hig

he

r Te

mp

era

ture

Time

6063

66

� Strip Flotation Line � Min Gauge 0.3 mm

� Max Gauge 4 mm

� Min cooling rate: ~ 30 K/s

� Max cooling rate: > 300 K/s

67

� Alpha � Alpha ( α ) = Heat Transfer Coefficient

� α ~ v 0,7 [W/m²K]

� Determines how much heat is transfered per each m² of (contact) surface and temperature difference (Medium to metal)

68

� The higher the alpha value – the higher the cooling rateFa

ste

rC

oo

lin

g(K

/s)

Higher Alpha (W/m²K)

4 mm

� The thicker the strip, the lower the cooling rate (with gi ven alpha value)

69

4 mm

Fast

er

Co

oli

ng

(K/s

)

Higher Alpha (W/m²K)

1.5 mm

70

Fast

er

Co

oli

ng

(K/s

)

Higher Alpha (W/m²K)

4 mm

1.5 mm0.3 mm

71

Fast

er

Co

oli

ng

(K/s

)

Higher Alpha (W/m²K)

4 mm

1.5 mm0.5 mm0.3 mm

72

Fast

er

Co

oli

ng

(K/s

)

Higher Alpha (W/m²K)

4 mm

1.5 mm0.5 mm0.3 mm 1 mm

73

Fast

er

Co

oli

ng

(K/s

)

Higher Alpha (W/m²K)

4 mm

1.5 mm0.5 mm0.3 mm 1 mm 2 mm

74

Fast

er

Co

oli

ng

(K/s

)

Higher Alpha (W/m²K)

4 mm

1.5 mm0.5 mm0.3 mm 1 mm 2 mm

2.5 mm

75

Fast

er

Co

oli

ng

(K/s

)

Higher Alpha (W/m²K)

4 mm

1.5 mm0.5 mm0.3 mm 1 mm 2 mm

2.5 mm

3 mm

76

Fast

er

Co

oli

ng

(K/s

)

Higher Alpha (W/m²K)

4 mm

1.5 mm0.5 mm0.3 mm 1 mm 2 mm

2.5 mm

3 mm

77

Fast

er

Co

oli

ng

(K/s

)

Thicker Strip (mm)

α 1.800 W/m²K

78

� Strip Flotation Line � Min Gauge 0.3 mm

� Max Gauge 4 mm

� Min cooling rate: ~ 30 K/s

� Max cooling rate: > 300 K/s

79

Fast

er

Co

oli

ng

(K/s

)

Thicker Strip (mm)

α 5.800 W/m²K

80

Fast

er

Co

oli

ng

(K/s

)

Thicker Strip (mm)

α 1.800 W/m²K

� Water Injected into Air = Mist Cooling

α ~ 200 – 1600 W/m²K

� Water Coolingα ~ 5.800 – 1.800 W/m²K

81

� Air Coolingα ~ 40 – 180 W/m²K

82

Fast

er

Co

oli

ng

(K/s

)

Thicker Strip (mm)

83

� Otto Junker Mist Quench

� Water Injected into Air = Mist Cooling

α ~ 200 – 1600 W/m²K

� Water Coolingα ~ 5.800 – 1800 W/m²K

84

� Air Coolingα ~ 40 – 180 W/m²K

85

� Water Injected into Air Stream

86

� α function of air speed

� α function of water density

87

� α function of air speed

� α function of water density

Hig

he

r A

lph

a V

alu

e (

W/m

²/K

)

88

Fast

er

Co

oli

ng

(K/s

)

Thicker Strip (mm)

89

Fast

er

Co

oli

ng

(K/s

)

Thicker Strip (mm)

Sebastian März (Otto Junker, Lammersdorf)Prof. Dr. Herbert Pfeifer (RWTH Aachen University, Department

of Industrial Furnaces and Heat Engineering)

„Modern Furnaces for theAluminium Industry “

Thursday, December 11st 2014