Alpine Hydrogeology: Storage and Flow of Groundwater in Moraine and Talus Deposits Masaki Hayashi,...

Post on 21-Jan-2016

227 views 0 download

Tags:

Transcript of Alpine Hydrogeology: Storage and Flow of Groundwater in Moraine and Talus Deposits Masaki Hayashi,...

Alpine Hydrogeology: Storage and Flow of Alpine Hydrogeology: Storage and Flow of Groundwater in Moraine and Talus DepositsGroundwater in Moraine and Talus Deposits

Masaki Hayashi, Jaime Hood, Greg Langston, Masaki Hayashi, Jaime Hood, Greg Langston, Danika Muir, Alastair McClymont, Larry BentleyDanika Muir, Alastair McClymont, Larry BentleyDept. of Geoscience, Univ. of Calgary, CanadaDept. of Geoscience, Univ. of Calgary, Canada

From Processes to Parameterization

field observation

Q

physically-based model

Q

Storage

grid-scale functionriver-basin model

Opabin Sub-Watershed in Lake O’Hara Basin

1 km

CANADA

USA

^^

^^

^^

^

^^ ^

^^^^^^

^^^

^^

^

^

^ LORB

CANADA

USA

^^

^^

^^

^

^^ ^

^^^^^^

^^^

^^

^

^

^ LORB

L. O’Hara

Hydro-meteorological instrumentation

Annual snow survey at peak accumulation

0

0.5

1

1.5

5/1 5/21 6/10 6/30 7/20 8/9 8/29 9/18 10/8

snow melt glacier melt rain

Water Input to the Opabin Watershed fl

ux

(m3 /

s)

2006

0

0.5

1

1.5

5/1 5/21 6/10 6/30 7/20 8/9 8/29 9/18 10/8

snow melt glacier melt rain stream flow

Water Inputs and outputsfl

ux

(m3 /

s)

2006

HungabeeHungabeeLakeLake Opabin LakeOpabin Lake

Source Source springspring

Opabin GlacierOpabin Glacier

Opabin Opabin CreekCreek

500 m

N

Opabin Plateau

morainemoraine

Lake Lake O’HaraO’Hara

Opabin Opabin GlacierGlacier

SpringSpring

Opabin LakeOpabin Lake

seismic refractionseismic refraction

electrical resistivityelectrical resistivity

Seismic Refraction

bedrock

Electrical Resistivity

bedrock

massive ice

permafrost

Nuclear Magnetic Resonance ImagingBlue colour indicates water molecules

Lehmann et al. (2011. J. Geophys. Res., in press)

bedrock surfacebedrock surface(seismic imaging)(seismic imaging)

Opabin Opabin GlacierGlacier

SpringSpring

Opabin LakeOpabin Lake

Ground-Penetrating RadarGround-Penetrating Radar

Bedrock Surface Map from Radar Data

Opabin Lake

GW Spring

Emerging Conceptual Model

Langston et al. (2011, Hydrol. Process. 25: 2967)

Talus Covers 25 % of Opabin Watershed.

100m

Babylon Catchment

talustalus

bedrockbedrock

gauging stn.gauging stn.

Gauging Station

0

0.01

0.02

0.03

0.04

7/19 7/20 7/21 7/22 7/23 7/24 7/25 7/26 7/27

dis

char

ge

(m3/s

)Babylon Creek Discharge, 2008

Diurnal fluctuations, peaking in early evening.

19:00

Half life (1/2) of exponential decay < 1 day.

1/2

Hillslope Flow in Unconfined AquifersBrutsaert (2005) Approximation: Kinematic Wave

sinsin Kydx

dyKyQ

Q: flow per unit width (m2/s)K: hydraulic conductivity (m/s)

The pulse of water table travels like a wave.

c = K sin / ne

c: velocity of wave propagation (m/s)

ne: drainable porosity

y

x

hyd

rau

lic c

on

du

ctiv

ity

(m/s

)

0

0.01

0.02

0.03

0.1 0.2 0.3 0.4drainable porosity

time lag3 hr7 hr

From wave velocity

Analysis of Babylon Hydrograph

Peak discharge – peak snowmelt = 3 to 7 hrs

0

0.01

0.02

0.03

0 0.02 0.04 0.06saturated thickness (m)

flow rate0.03 m3/s0.01 m3/s

Flow rate equation

Flow rate ranged between 0.01 and 0.03 m3/s

tracer test 0.02 m/s

Conceptual Model of Talus GroundwaterFast hydraulic response time (< 1-2 days).

Flow through a thin (< 0.1 m) saturated layer.

Late-lying snowpack – importance water source.

snowpack

bedrock

talus

Muir et al. (2011, Hydrol. Process. 25: 2954)

0

5

10

15

20

25

5/1 5/21 6/10 6/30 7/20 8/9 8/29 9/18 10/8

Opabin Creek

dis

char

ge

(mm

/d)

2006

(5 km2)

Normalized Stream Dischargevolumetric discharge / drainage area

groundwater contribution

0

5

10

15

20

25

5/1 5/21 6/10 6/30 7/20 8/9 8/29 9/18 10/8

Opabin Creek

O'Hara outlet

dis

char

ge

(mm

/d)

2006

(5 km2)

(14 km2)

Normalized Stream Dischargevolumetric discharge / drainage area

groundwater contribution

0

5

10

15

20

25

5/1 5/21 6/10 6/30 7/20 8/9 8/29 9/18 10/8

Opabin Creek

O'Hara outlet

Kicking Horse R.

dis

char

ge

(mm

/d)

2006

(5 km2)

(14 km2)

(1850 km2)

Normalized Stream Dischargevolumetric discharge / drainage area

Challenges and the Way Forward1. Turn the conceptual models into process-based

numerical models (e.g. finite-element flow model).

2. Determine grid-scale (i.e. 10 km) parameters for river basin model (e.g. MESH).

3. Test the concepts and models in other basins.

IP3 Legacy1. Lake O’Hara research basin for alpine studies

2. First Canadian study on alpine groundwater hydrology.

3. Hydro-meteorological database.

PeopleJim Roy, Shawn Marshall, Mira Losic, John Pomeroy, Nathan Green, Kate Forbes, and may others.

Funding SupportCanadian Foundation for Climate and Atmospheric Science (IP3 Network)Biogeoscience Institute (Univ. of Calgary)Alberta Ingenuity Centre for Water Research Environment CanadaNatural Sciences and Engineering Research Council

Logistical SupportLake O’Hara LodgeParks Canada

Acknowledgements