AEROBIC AND ANAEROBIC BIODEGRADATION OF PCBS · Aerobic and Anaerobic Bipdegradation of PCBs •...

Post on 19-Apr-2019

239 views 0 download

Transcript of AEROBIC AND ANAEROBIC BIODEGRADATION OF PCBS · Aerobic and Anaerobic Bipdegradation of PCBs •...

Aerobic and Anaerobic Bipdegradation of PCBs• • ' /= . ,

Presentation toEPARegionll

Daniel A Abramowicz, ManagerEnvironmental Technology Program

Biological Sciences LaboratoryGE Research & Development Center

New York City, NYDecember 17,1990

402628

Aerobic Degradation• Introduction• rDNA Efforts• Dragstrip

Anaerobic Dechlorination• Introduction• Aroclors• Single Congener

Anaerobic/Aerobic• Lab Results

402629

402630

anaerobicbacteria

aerobicbacteria

cells+

CO2+

H2O

402631

fte,

5'•v <r 6"

14'-biphenyl [95-92-4]

2,3,3'»4,4'-pentachloro,l ,1 '-biphenyl2,33',4,4'-pentachlorobiphenyl

234-34

OFfliO (i0-)meta (m-> 1,3-para ^p-) 1,4-

o-

HI-

402632

RELATIONSHIP BETWEEN NUMBERS OF ORTHO AND NON-ORTHOCHLORINE ATOMS IN COMMERCIAL AROCLORS

Figure 8-L

i 2 3 4NUMBER OF ORTHO CHLORINE ATOMS

Relationship between numbers of ortho and non-ortho chlorine atomsin commercial Aroclors.

402633

f *

7:1" ii0</>

4-

1

402634

Cl,CL Cl,

CI4 Cle•••••••••••MHB • • •• *«MMBBIMm

cu

1

JuU

AROCLOR 1260

CLCl, Cle

AROCLOR 1221

jjjAROCLOR 1242

AROCLOR 1248

uu

AROCLOR 1254

Cl10

Cl

AROCLOR 1268

CIC!3 .

CI4 _CjeJ_"~~CI5

ciLAJL

C CI

A

402635

402636

otoa\10

Table 1: Identification of PCB'degrading environmental isolates

Sfrain designation

MB1Pi434

H201,Pi704,RJBHI 28, H336, H430LB400, LB410Pi939, HI 130, Pi304

H702, PilOl

amsm

Corynebacterium sp.Alcaligenes faecalisAlcaligenes eutrophusPseudomonas cepaciaPseudomonas testosteroniPseudomonas sp.Pseudomonas (Acidovorans group)

Bacterial Strain

PCIcongener

o100>0000

2,32,4'

4,4'2,4,4'2,5,4'2,*,3',4'

2,2'*,3,2',3'2,9,2"2,3,2',5'

2,4,5,2',3'2>4,2',4'

2,3i*,2',5'2,4,5,2',5'2,4,5,2',4',5'

"3- CO O>O Q CO« #.. g>Q- A.,0k

CM <? g JT

.g ':£ Es 5 S

•• • • •• •

o>« H .Jk. ft.

"" « "* S 3j 5: a: z ui i

• ••••• • . •

99 •• ' •

• • • • *

• •

*«-it•v

o oO «- Ox» * *S 2 S

o • •

Figui-e 1: Comp«s0fl ^ ti^ PCl-4^rad^ competence of environ-me^tal bacterial kdla|g$/ [0] Wfei^s ^^ H850 degraded less than20% of this conger (243U245-CB), bat a iti^abolite was isolated.[adapted from

402639

Biphenyl and PCB Biodcgradation Pathway

C02H

oto

H850/LB400

MB1/H850/LB400

a

Figure 3: Initial oxidative degradation products for attackvia 2,3- and 3,4- dioxygenases on the congener 2,3,2',5'-tetrachlorobiphenyl.

402641

A)

B>

uC)

D)

LB400

MB1

I3 4

LB400 and MB1

Figure 4: Biodegradation of PCBs on soil by LB400 and MB 1(SOppm Aroclor 1242, 109 cells/0.4 gm soil) Shaded peak isnot degraded (246-24-CB) and is used as an internal standard.[adapted from reference 4]

Kfcl *i-

otoo\ri^to

Aerobic Degradation• Introduction• rDNA Efforts• Dragstrip

Anaerobic Decfalorination• Introduction• Aroclors• Single Congener

Anaerobic/Aerobic• Lab Results

402643

1

SCISSORS

PLASMIDpSCOl

RECOMBINANT DNAMOLECULE

INTRODUCTIONINTO HOST C€Ll

JOINING

FOREIGN DNA TOBE INSERTED

ANTIBIOTIC -RESISTANCEMARKER

SELECTION FOR CELLS CONTAINING RECOMBJNANT DNA MOLECULESBY GROWTH IN THE PRESENCE OF ANTIBIOTIC

Figure 5-11The cloning of DNA in a plasmid.

402644

A)bph A COOH

B)

oto

CJ1

CC 1~ o(A O

CO UJ I

2.0 6.1

DC CC CC CCO O 0 0O O O ojj UJ UJ UJ

0.8 2.0 2.9 6.65| ....bph A.........bph B/C...

CCOj0

Uii

, , , l

CC00

UJ

2.3 0>ph D

OC

I s !l U J l

.5

IPCB METABOLISM

Figure 2: A) Metabolic pathway for biphenyMPCB degradationB) Arrangement of the EcoRJ fragments in pGEM410

bph A - biphenyl/PCB dioxygenase Jbph B - dihydrodiol dehydrogenasebph C - dihydroxybiphenyl oxygenasebph D - hy<ir»se

AUHoo

B

I J. -AA/-j UL)Lj

LUFigure 4-3. Degradation of Aroclor 1242 (10 ppm) by PUudomonat strain LB400

and K coU FM4560 in a 24-h resting cefl assay. Panel A, LB400;panel B, FM4560; panel C, nercuiy-ldlled control.

38

402646

otoa\

TaMt4-2

f ACTtRlAL STRAINS

RGBCONGENER

~ e< & *

s:K SI "» ° * «0 «

o » w « 2 w f l » « w l l r t ^llrtlf2 » - « 2 » - ^ r » - » - S « ~ 2l«ltnX u i x a . x x u i x 2 E x c L l x | 3 B56

2,32,4'

4,4'2,4,4'2,5,4'2,4,3',4'

2,2'2,3,2',3'2,5,2'2,3,2',5'

2,4,S,r,$'2,4,2'f4'2,5,3',4'3,4,3',4'

2,S,2',r2,3,4,2',S'2,4,5,2',*'2,4,S,2',4',r

ffttffftft000*000000000000000000000000000000000*000000• ••000000000000000000••00000••000000000««

000000

•••00000000000000• 00••0000• * • 9000000

0**0000

KEY:% DEGRADATION•20-39• 40-59

60-7980-100 000

Table 2: Relative PCB degrading activity of E. coli recombinantstrains an&Pseudomonas strain LB400.PCBCongener

2.3

2.4'

2,5,2'2,5,4'2,3,2',3'2,3,2',S'2,5,3',4'

1,4,*,*',*'

4,4'.4.4*

.4.2X,4,3',4'

Percent Activity *LB400

(Blphenyl)FM

4100FM

45COLB400

<S)

'Indicated »» UM percent of degradattoncompared wKh Wphenyl- grown LB40AResting cell assay: Mix IB, 2BFNT4 1 00: H8 1« 1 (pGEM4 10)

LB40D (S): grown using succkiate

Key: % Degradation»t-180ft-7t

• 4t-ft* 2t-ltO 1-1»

402648

itH(tter3*xAlaIl*

101 i'OBTcaTCMauuyu>uu*j'i<XTT6*TccAoocA 200eClMUallaJUr^

201 TCTACCCCCATCACAt. JCU lATCAQCTOGAOCTTCAQC.'COUl HI lUaOOClC H.rTACTTOOaCJICCJ>CMTCAICTOCCTC*AACCOOOCAU«LMt61yU*eiBte(^

401la^

sai «o«>»lj l

601 700

701 800

B01 AC

901 MODCly»jci<jr* ltto^

looi 1100

1101 TCCCCOTCTC<XaCCCGCXaCCTCCCAATCAAATCGl>GStGrC<ifcX.Cl 'lUKXCTGSICGAT ATCAAGCAAGAATATCGCCG 1200

1201 «ACAACATCOX»ACTTCTCC«»«X:«JCCTCTTTGA<XAG 1300

1301 ACgCACCCGCTCAATCCCCAGATCGCXXilCCCTOtglCOCACAOCCGTCTCCCTCai'll'l ^ 1400SerGlnProLouAsnAlaGlnMetGlyLeuGlyArgSerGlnThrGlyHlsProAspPheProGlyAsnValGlyTyrValTyrMaGltXSluAlaAlaA

1401 G«arraTCTAtCACCACTG«TGCGCAT<»TGTCqa<XC«^ 1500rgGlyMetTyrHlsHlsTrpMetArgMetMctSerGluProSerTrpAlaThrI«ul.y»ProEnd

402649

DC

& 1=ip

1Prebe 1

Probe 2

410

otoa\eno

CO

, - \

f Cfc dc

15 kt

Ws *

vM

402651

Aerobic Degradation• Introduction• rDNA Efforts• Dragstrip

Anaerobic Dechlorination• Introduction• Aroclors• Single Congener

Anaerobic/Aerobic• Lab Results

402652

402653

m*»X

oto

Ul

Im

•V

•&'•••'%->':'•.•.:••^M<'-'•^' •"jif-~-,~'-','*§£-:'§€H:t. C

T f

;• ••&>!:'-.•./i'-vV/--.-'.

'It> v;'.-*i;''/--

•;*;•.• --^: 7: ?'"

•,>;^,y,_:_;v402656

"'•••$'3i-y*\:

2I

^.^M:»M+;^,' .. ' •.-,". T.' r"1^.^? ' "' ..•"';•'*.•<. "

.•'

'.. '''•.'••" ' • ' • ' - -'' -:'^S^' " ' '

PCB EXTRACTION FROM OLENS FALLS SOft.RQURE1: KINETIC DATA - SDBS ON TWO SOILS

oIcoOCL

3;CO

1% SOBS ON OAKLAND SOIL @ 80 C

1% SDBS ON GLENS FALLS SOIL© 80 C

EXTRACTION TIME

402657

PCB EXTRACTION FROM GLENS FALLS SOILFIGURE 4: EQUIL PARTITION CURVES FOR 1 % SOBS SOLN

8 *1" "*

:••••:.:

UNTREATED QLENS FALLS SOILKpav««5 5.8 Vkg

CAUSTIC TREATED SOIL

CAUSTIC & HEAT TREATED 9C*.Kp «v« = 0.9 I/kg

SOt'N PCS CONCEWTIWDON

402658

Aerobic Degradation• Introduction• rDNA Efforts• Dragstrip

Anaerobic Dechlorination• Introduction• Aroclors• Single Congener

Anaerobic/Aerobic• Lab Results

402659

•* I

x *

Ln n

i i i i i iJL fc.^ t^ -JL. - - . -J.-A__

k i

JUi JU.U

X 1ill II I I I

Fig. 1. DB-1 capillary' gas chromatograms (plots of detector ftspomc versus eiution time) of WpcrHudson River sediments that show surface pattern A (largely wncfcangcd Aroclor 1242) and subsurfacepatterns B, B , ancUC. Aflame ionization detector was wsed so Aat ate PCS peak response was nearlyproportional to molar concentration; however, BOB-PCB iwpHrincs in the samples also produce*!observable peaks (designated * and Imp.). The major Pd congeners KS|>onsibk for the observes* ecafcsare designated by the numbers that correspond to Ac poodoa rf cMomes on each of Ac two pftcwrtrings; thus 2-2 and 24-4 indicate 2,2'-<8chlorobiphcByl and 2,4,4'-«ichk>robiphenyl, respectively.Internal, standard peaks are designated Int. std.

B-B' and C were associated with the deeper"hot spots," which have been estimated tocontain 77 metric tons of PCBs (6).

Quantitation of the individual capillaryGC peaks indicated that the levels of most

1 tri- and tctrachtorobiphcnyls were depressed.relative to those in Arodor 1242 in aflclasses of upper Hudson River sediments,but particularly in those that showed pat-terns B, B', or C Summary data for 2,5,4'-plus l '-dvloro&phenyl (CB) and for2,5,3',4'-OI (which arc representative ofcongeners with leaser or greater rcsponsivc-hess «o dechtorinadon. respectively) areshown in Table 1. Convener/, in all sedi-ment classes the kveb of the 2,6,2'* and2,6,3'-CBs and those of all dkhlorobiphcn-yb were increased two- to sixfold, and thelevels of the monochlorobiphcnyl 2-CB in-creased 7- tp- iTlold, with the largestchanges ot^crvcd in the samples thatshowed patterns B, B', cr C (Table I). Theincreases in die mono- and dkkbrobifteB-yls occurred despite their fyeaeer tendencyto dute into Ate fiver water or wxtogoacrobk l)iodcgradatioa. Tkus k was cfvideacthat in the upper Hudson River as a wfeofc amassive (40 »o 76 metric tons) coBverskM oftri-, tetr>, and higher ehloK>biphe»yJs tomono-, «S-, aod 2,6,X'-tFichJorobig>henyls(X' = 2, 3, or 4) kad occurred, paniculariyin die subsurface (15- to 30-year-old) por-tiofi of tike sediments.

The sediments of Silver Lake, a 1-0-haurban pond ia PittsfieW, Massachusetts,eootaia an estimated 29 metric tons of PCBs(iff), wisach are believed to have originallyteen almost entirely Arodor 1260 releasedfrom adjacent transformer-manufacturingoperations before 1972. A mapping and

Arocloriaeo

_>—IL-.

Pattern F («G)

710

Fig. 2. DB-1 capillary gas chro-matograms (plots of detector re-sponse versus eiution time) of Aro-clor 1260 and of the Aroclor 1260residue extracted from a|SUve£Lakesediment composite that showedmamly^pattem F (with some .pat-tern G, which contributed the threesmall peaks on the left). These chro-matograms were obtained with anelectron capture detector. Such de-tectors give a stronger responsewith the more heavily chlorinatedPCB congeners, a weaker responsewith the less heavily chlorinatedones, and little or no response withunchlorinated impurities. The ma-jor PCB congener peaks and theinternal standard are designated asin Fig. 1.

SCIENCE, VOL. 236

rate** of (Sl-Ws V dxAfr*M*«W S««K*€.t&C *,

RELATIONSHIP BETWEEN NUMBERS OF ORTHO AND NON-ORTHOCHLORINE ATOMS IN COMMERCIAL AROCLORS

Figure &-1.

. 1 2 3 4

NUMBER OF ORTHO CHLORINE ATOMS

Relationship between numbers of ordw and iwi\-ort/io chlorine atomsin commercial Aroclors.

402661

Comparison of Environmentally Transformed PCBand Laboratory Incubation of PCB

Aroclor 1242

ICM

NI

C4

M

*I

MI

•*CV1

N**-*

«N*

Itn

\ toCM"I

U)N*

I

LML,

Environmental Transformationof PCB

Hudson River Sediment

CMI<a

CMIto*

CM

Anaerobic IncubationArocJor 1242/Hudson River

Sedkeemit16 weefc^

402662

Aerobic Degradation• Introduction• rDNA Efforts• Dragstrip

Anaerobic Dechlorination• Introduction• Aroekwrs

Se Congener

Lab Results

402663

SJcOffCA

-r*n

Mi . I 11

2

Jj»#**

J[ L I utlB

./LAJJlMM. JlM

Figure 6-2: Dechlorination patterns observed under different conditions after 18 weete.Panel A, autoclaved control; Panel B, includes RAMfM (pattern M); Panel C, includesRAMM + cysteine hydrochloride at 1 gm/L (pattern Qj). • as-

402664 an-

fifteen H

-r.

0 10 20 30 40 70 80 too tie

-r,tt.

10 X 30 40 90 80 70 9 9 1 1 0 0 110

Ul I"ilS£1-3oOS

0 1 0 2 0 3 0 4 0 9 0 0 0 7 0 8 0 9 0 1 0 0 1 1 0

402665

<ri£iLrfT-1

lo

O-H

io>

S-E

Oo

zc09

8

8

8

5-=

ABSOLUTE DIFFERENCE(MOLE PERCENT) MOLE PERCENT

8-

i

MOLE PERCENT r*

I+

99920^

MOLE PERCINT

o o o e & gMOLE PERCENT

o o

rrtrU\0^

I

I-

l9 •

oto

Water-only Addition9

Aroclor 1242/1254/1260

80 100

4.5

1.5

-1.5

-4.5

-7.5 'iimiiuH

Difference

20 40 60 80 100

Peak Number in DB1 (118-peak profile) 402668

Nutrient Acceleration

£o2

Aroclor 1242/1254/1260

4.5

-7.5 ^0

80 100

20 40 60 80 100

Peak Number in DB1 (118-peak profile)402669

402670

oe o 00 oa oa OB OT

SI

SI

ov oe OT a OT a

5-in

3<&V *<HH N

I f f

2 "Ci i

; fr ' 21 1 1 1 I

9 ' I 9 "0O O O L X AUSTIN!

; »n— — i r-_'...

402672

'\

«A

11L INTENSITY X 10000. « 1.6' 2. 4 3.1

*

3.9INTENSITY X 1000or i.? 2 3'

INTENSITY X 10C:0.1 1.5 2 1 Z

oto

W

402674

of ais of

d by

GC: can

sev-ium-iGCs ofjqualsrinesities

Figure 2. Gas chromatogram of Aroclor 1242 on SE-30 withan electrolytic conductivity detector. The\peak identificationnumbers correspond to the retention tirr^ relative to p,p'-

slQQ. From in^ctten, at the arrow, to peak 146 wasabout 20 min.

OMCTk<l01

Billings Island(Griffin Island)

Village ofFort Edward

*- Rogers Island

H7 site(1991 field test)

PC6

Thompson Island

Widespread Anaerobic Dechlorinating Microorganisms:

Contaminated Sediments

Escambia Bay, FL /Hoosic River, MAHudson River, NYNew Bedford Harbor, MASheboygan River, WISilver Lake, MAWaukegan Harbor, ILWoods Pond, MA KflU*a*>>Mx

Utoeontaminated Sediments

Adirondack Muck, NYCeotei Pond, MARed Cedar River, MISaline River, MISpier Falls, NY (Hudson River)

402677

Mole Percent Mole Percent

oto

00

cw

f~—•>._

•w—

••*••"

•Mmm

mtmimm•M

••*••"

•1«••

M

*l

••»*

•»«•

•B*M

mm

mm*m

fmm

•••

mmfff

*••>

••

•mm,

*•

h^ ro OD ^ cD O O O O C

. 1 . 1 . 1 . 1 .J^--"—— —— "'a3 :- e "=5 =. ° :

•*^MM

M

«h««•

•l

m••M

«•i«i•i

•••••

414*••*•««1

V

41i «MM

«i•*m

*•«w**•*

«M««1«i

*•1

1

• I •• I • I { I vJ

n5 C

«••M«W

••mm

mm••••

^mm

mm—mm•••••«•*•

«M•

mmmmmm«•M««•««*••«i

mmmm— •^«H••

M*•••MM

•Mm<•!•«H

Ml•*«D«•«i

•WH•M««•M

«J1«^«N4(

«M>ig•

' ' •««N

•«

«l••1

•MM«W•*«*m«•i•

^i

••••M*mmmmmmmmmtmtmmmt ••

mmmmmmmmm

•V••••l ^^^ i M

•••••••••^mmmmi

Immmmmmmm*mmmmmmmmmmmmmmmmmtii

ESBS••••••••••imm»••

mtm»

1

J

M' fr0 C

1 J

-

S 1r* IO

• O -**•5 1OP* =

••«•

•w<N•1

•Ml

^«•*•Mi«•M

mm*

• ••«*

\1)J

•M' •m•mm*

mm«M

*****«•

mmm

\ , :

0D

? ao di— • cr0 &*1 CO.M. 010 5+> ^M S3<t-* CDo> •-<3? as -^j^tt

Endogenous Dragstrip PCBs

£o

o3s

Experimental ow

100

-7.540 60

Peak Number in DB1 (118-peak profile)100

Endogenous Hudson River PCBs 0*7)

15

12

20 30 40 50 . 60 . X 70

12

<oo

10

fT...r...1t...|<.*|.M»|.»..f

80

Difference

20 30 40 50 6lPeak Number in DB1 (118-peak profile)

402680

PCB CONGENER DISTRIBUTIONIN WOODS POND SEDIMENT

BEFORE AND AFTER DECHLORINATION1

IllOccUJCLLU

10 ' 20 30 40 50 60 TO

ZUJOECLUEL

0

DAYS

ifliltlpiHfMf liill1 50 ' 60' 70T 00

jrHTnrryni \ \\ uii t H H i mmTiTiTiii mb\wm iiitli ini30 * 40 ! 50 ' 60 ' 70

GC PEAK NUMBER

1SECOND TRANSFER, 23456-CB, 69-5A1-133

idybnlfi© '' tf0 '

402681

Aerobic Degradation• Introduction• rDNA Efforts• Dragstrip

Anaerobic Dechlorination• Introduction• Aroclors» Single Congener

Anaerobic/Aerobic• Lab Results

402682

lavLH nozbuH riiiw noiiBnhoiriaaCI

otoc^00CO

WoodsPond

SilverLake

HudsonRiver

96%

14%

63%

3%

79%

34%

1%

7%

3%

402684

402685

Concentrations of Planar PCB Congeners (Dioxin-like toxicity)

Congener* Cone, of Congener in Cone, of Congener in %Aroclor 1242 Dechlorinated** Reduction

f ^ a\ Aroclor 1242* *• Jk - / XV/ \ / f+4 \

34-34345-34

345-345245-34234-34

2345-34

0.140.0030.00150.330.430.008

< 0.0050.0005

< 0.000150.0680.0610.0043

>96.5 -83

>90808646

Most active congeners in AHH/ERODen2yme indication assaysMicrobial dechlorination pattern C withHudson River sediments \

IOtoa\ooo\

EROD assay demonstrated 75% reduction in enzyme inductionwith dechlorinated Aroclor 1242

Transfer Experiments onto Different Supports

#C1 removed/25 wks

No support 0.0Sand 0.0Sawdust 0.0Clay 0.0Vermiculite 0.0

Whole sediment 1.3Peat 0.6Peat/Vermiculite 1.2Peat/Clay 0.5

402687

RELATIVE PERCENT RELATIVE PERCENT

10 21 38(Celsius)

402689

oto0>voo

W

3Hsos8-oeo>15*o3

5?5"i—*N)

p

crP

3(D

CD

03

o>

O-i

OH

Average Total Chlorines

i i t i i iOS *+

. I . . . . I .

I M I Ien ^ co ro M.o en -j m ton n o o o

O

,,-N

~

V

» »

-*- "j?•» i?.

*"'">.'

*x

X Conversion to 26 CB X Cofwtwiw to 26-CB

oto<T»VO

OtoO^IDto

EFFECT OF INCUBATION TEMPERATUREON DECHLORINATION OF 236-CB IN

CULTURES OF WOODS POND SEDIMENT

O 24°C30°C

D 16°C

10 15 20 25 30 35 40 45 50 55 60 65 70 75INCUBATION TIME (DAYS)

402693

Aerobic Degradation• Introduction• rDNA Efforts• Dragstrip

Anaerobic Dechlorination• Introduction• Aroclors• Single Congener

Anaerobic/AerobicLab Results

402694

BACTERIAL TRANSFORMATION OF PCBs

Organisms

Location

Requirement forActivity

TypedTransformation

Best Stubstrates

AEROBIC BACTERIA

Pseitdomonas, Alcallgenes,Corynebacterium,...

Water Column,Surface Sediments

Oxygen

OxidativeRing Cleavage

MofK> toPeMa-CB

ANAEROBIC BACTERIA

Unknownx

Sub-sediments

Lack of Oxygen

ReductiveDechlorination

Tri-toOcta-CB

402695

y**w»|X,

O.

tO O

ttl

o o o o

1J

o

402696

500

h- 400

200

monooto

di

• Control 1242/1254/1260(H Anaerobic Dechlorination (Pattern Q)• Anaerobic + Aerobic (LB400/MB1)

tri tetra perrta hexa hepta octa nona decaHOMOLOG GROUP

PCB CONCENTRATION (fJLM)ro £» o> oo o K>o o o o o o

!•

lAf

/—^

402699

xi

oto

r\

CAI9KN •IOMACTW

402702

402703

Estimated Time Schedule

March 1,1991

April 1,1991

May 1,1991

June 15,1991

September 15,1991

October 15,1991

Final hardware design andexperimental plan

Hardware assembly begins atfabricator shop

Site preparation begins

Site preparation completedHardware assembly completedConstruction of facility begins

On-site construction completedIn situ test begins

In situ testing completedSite closure begins

Site closure completed

402704

Estimated Protocol

OH 1: Isolation only (control).

Cell 2: Nitrogen sparging and rake agitation only (control).No nutrient or microbial additions.

Cell 3: Full process control with added naturalmicroorganisms cultured in the laboratory (e.g., pH,temperature, oxygen level, nutrient composition,agitation, and cell density).

Cell 4: Full process control with added indigenousmicroorganisms from the site cultured in thelaboratory (see Cell 3).

Cell 5: Partial process control with added naturalmicroorganisms (e.g., ambient temperatureand pH, limited nutrients, agitation,aeration, and cell density).

Cell 6: Partial process control with indigenousmicroorganisms (see Cell 5).

402705

Drawing, shows proposed lo-by-25-foot experimental station to be placed in Woods Pond inLenox. rond is actually 230 acres, and trie final project may include a 30-foot ramp fromshore.

, WO

402706

Important New Findings;

- Rates at lower temperatures ~room temperature rates

- Transfer/enrich organisms

- Organisms are common• Contaminated sediments• Uncontaminated sediments

- Potential for complete anaerobic degradation• Hudson River organisms can remove all outer

chlorines• Housatonic River organisms can remove inner

chlorines

402707

SUMMARY

• PCBs do biodegrade• widespread activity in sediments• aerobic• anaerobic• [PCB] in sediment/bass

• Attractive alternative• in-place• natuiai process• less invasive

• Moving forward• accelerate this natural process• lab scale• river model• site test in the river (1991)

402708

PCB PROGRAM PERSONNEL - HISTORICAL LIST

/****K

/**"T\

AEROBIC DEGRADATION

Organism isolation:Donna L. BedardLawrence H. BoppMichael J. Brennan, Jr.Cart JohnsonJohnH. LobosRonakJ Unterman

Biochemistry/Pathways:Donna L. Bedardlawrence H. BoppMichael J. Brennan, Jr.John F. Brown, Jr.Marie L HaberlRalph J. MayRonald UntermanRobert E. Wagner(University of Iowa)(University of Kentucky)

Application/Scate-up:Angelo A. BraccoRonald E. BrooksKenneth M. CarroflDavid K. DietrtchMark R. HarknessJohn B. McDermottDavid P. MobleyCharles SchwartzGregory L. Warner

Molecular Genetics:Bruce D. EricksonFrank J. MondeDoJames R. Y&tes

Metabolism:John A. BergeronBruce D. EricksonKenneth M. FishDavid W. KruegerDavid T. Lin

ANAEROBIC DECHLORINATIQN

Hudson River:Daniel A. AbramowiczMichael J. Brennan, Jr.Edie L GallagherChitra StokesHeidi M. Van DortWilliam A. Williams(Michigan State University)(New York Univ. Medical Center)(Oregon State University)(Stanford University)(State Univ. of New York, Syracuse)(University of Georgia)

Woods Pond:Donna L. BedardStephen C. BunnellHeidi M. Van Dort

Models/Scate-up:Mark L Stephens(Ceigene Corporation)(University of Michigan)

ENVIRONMENTAL ASSESSMENT

John F. Brown, Jr.George M. Frame, IIRalph J. May(AccuStandard)

Oto•~JOvo

7/90