Advanced Optical theory Modelling and Data...

Post on 04-May-2018

219 views 2 download

Transcript of Advanced Optical theory Modelling and Data...

Advanced Optical theoryModelling and Data

ProcessingJose Moreno

3 September 2007, Lecture D1La4

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 2

ADVANCED OPTICAL THEORYPart I: Signal modelling and data pre-processing

Signal modelling at the satellite level

Radiometric corrections: calibration and noise removal

Atmospheric correction

Topographic normalisation

BRDF corrections

Working with data series: spatial and spectral consistency

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 3

Signal Modellingat the Satellite Level

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 4

•The atmosphere modifies theradiation measured by opticalsensors:• Aerosols and gases presentoptical activity at VIS/NIR/SWIR.• Reflectance increases / decreases depending on thewavelength.• Image loses contrast.

Removing the atmospheric influence from remote sensing data is necessary before data exploitation

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 5

MULTIPLE CONTRIBUTIONS TO THE SIGNAL

6S formulation

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 6

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 7

Planck’s Law

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 8

0

10

20

30

40

50

60

70

0 2000 4000 6000 8000 10000 12000 14000

Wavelength (nm)

Sola

r Rad

ianc

e (µ

W/c

m2 /n

m/s

r)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0AtmosphereSolar 1.0 ReflectanceEarth 300 K, 1.0 Emisivity

Earth Radiance (µW

/cm2/nm

/sr)Available Signal

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 9

800

1000

1200

1400

1600

1800

2000

2200

0.4 0.5 0.6 0.7 0.8 0.9 1

6S

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 10

0100200300400500600700800900

10001100120013001400150016001700180019002000210022002300240025002600

0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

wavelength ( m)

Sola

r Irr

adia

nce

(W m

m

)-1

-2μ

μ

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 11

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 12

Thuillier model (2003)Based on solar spectral irradiance measurements from:

(a) SOLar SPECtrum (SOLSPEC) spectrometerflew with the ATmospheric Laboratory for Applicationsand Science (ATLAS) missions

(b) SOlar SPectrum (SOSP) spectrometerflew on the EUropean Retrieval CArrier (EURECA) missions

and data from Upper Atmosphere Research Satellite (UARS)

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 13

800

1000

1200

1400

1600

1800

2000

2200

400 500 600 700 800 900 1000

TUILLIER 2003

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 14

0.0

0.5

1.0

1.5

2.0

2.5

0

500

1000

1500

2000

2500

400 500 600 700 800 900 1000

SMARTS_ChKur

SMARTS_newKur

SMARTS_Gueymard

SMARTS_oldKur

SMARTS_ThKur

SMARTS_Wehrli_WRC85

SMARTS_CebChKur

mW/m2/nmm

W/m

2/nm

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 15

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80

wavelength ( m)

Sola

r Irr

adia

nce

(W m

m

)-1

-2μ

μ

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 16

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 17

ABSOLUTE SOLAR IRRADIANCE CHANGES

δL δT δRL

= 4 + 2T R

Temperature variations

Radius variations

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 18

COUPLING OF AEROSOLS AND WATER VAPOUR VERTICAL STRUCTURE

Vertical aerosol amount andtype variability:- continental bottom layer- maritime upper layer

+ diurnal boundary layerevolution

aerosols vertical structure water vapour vertical structure

High spatial and temporalvariability:- atmospheric circulation- topography

+ turbulent structure

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 19

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 20

spectral scattering albedorural aerosol model

(for 0, 70, 80 and 99% humidity)

spectral scattering albedomaritime aerosol model

(for 0, 70, 80 and 99% humidity)

SPECTRAL VARIABILITY IN AEROSOLS EFFECTS

coupled to angular variability (different phase functions)

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 21

Aerosol type phase functionλ = 550 nm

ANGULAR VARIABILITY IN AEROSOLS EFFECTS

coupled to vertical structure

aerosols can change the shape ofthe TOA-observed surface BRDF

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 22

MODELING OF ADJACENCY EFFECTS IN THE DEFINITION OF SPATIALLY AVERAGED 'ENVIRONMENT' REFLECTANCES

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 23

Dealing withatmosphericadjacency effectsin an accurate wayrequires quitecomplicatednumericalcomputations !!!

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 24

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 25

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 26

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 27

Effective atmospheric Point Spread Function (PSF)

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 28

Radiometric corrections:calibration andnoise removal

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 29

Pre-processing steps:- Radiometric calibration

- Noise removal

- Cloud screening

- Geometric correction

- Atmospheric correction

- Database management

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 30

• Pre-launch radiometric calibration to traceable standard (accepted reference)

• Post launch calibration campaigns to maintain/monitoring in flight calibration (vicarious)

• On-board calibration (both radiometric and spectral)

RADIOMETRIC CALIBRATION

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 31

Pre-launch calibrations

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 32

AVHRRs’ sensors’ response over time

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 33

Univ. Valencia

M. Cutter

Radiometric calibrationProba/CHRIS data

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 34

ORIGINAL IMAGE CORRECTED IMAGE

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 35

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 36

NOISE REMOVAL: Example for CHRIS data

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 37

Spectralradiometriccalibration

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 38

Atmospheric correction

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 39

Measured Top-Of-Atmosphere signal

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 40

• TOA radiance modeled assuming Lambertian reflectance for the target:

• Analytically invertible to retrieve ρs.

• Removal of adjacency effects

Surface reflectance retrieval

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 41

Non-Lambertian areas with topographic structure:- no analytic inversion under approximations- decoupling 'effective' reflectances and 'effective‘ geometric termsrequired for environment

- multistep numerical procedure required for inversion- multiple reflection terms only significant for high reflectance surroundings

Flat Lambertian areas:

INVERSION OF SURFACE REFLECTANCE

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 42

• Cloud screening based on static thresholds over TOA reflectance and spectral slope.

• 2 sets of thresholds:– “Restrictive” set: detects pixels with minimum probability of

clouds AOT retrieval– “Relaxed” set: detects pixels with a high probability of

clouds CWV and reflectance retrieval

Cloud masking

Relaxed Restrictive

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 43

CLOUD SCREENING

- Very dependent on the availablespectral information

- Many different algorithms (from simplethresholds up to sophisticate techniques)

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 44

• Retrieval of AOT for each cell• Filling-in empty cells.• Conversion from VIS to AOT at

550nm

AOT retrieval

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 45

Very largevariability in aerosolscontent

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 46

14 July 2003

14 July 2004 17 July 2004

SPARC Campaigns, Barrax (Spain)

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 47

Surface reflectance retrievalAtmospheric correction: Removal of the atmospheric effectsfrom the measured at-sensor radiance, leading to thederivation of surface reflectance images.

AerosolsWater vapor

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 48

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 49

Topographic normalisation

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 50

Effects introduced by topography:A - Vertical geometric distorsion (horizontal displacement due to relief)

B - Variation of atmospheric (optical) properties with height

C - Relative changes in slope and orientation of surface introduce variations in illuminationconditions:

Direct irradiance:- illuminated areas- self-shadowed areas- cast-shadowed areas

Diffuse irradiance:- directional distribution- modeling of sky view factors

Surface reflectance model:- non-Lambertian effects- modeling of direct/diffuse components

D - Adjacency effects (additional contributions)

E - Additional multiple reflections

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 51

µs DEM

µil

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 52

DEM L0 Edir·µs Edif

Cosine correction

Hay’s model

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 53

TOTAL APPARENT REFLECTANCE

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 54

SIMPLE SEMI-EMPIRICAL FORMULATIONS OF SURFACEBIDIRECTIONAL REFLECTANCE MODELS USED FOR

ATMOSPHERIC/TOPOGRAPHIC NORMALIZATION

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 55

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 56

Other simple empirical models:

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 57

BRDF corrections

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 58

nine types of reflectance measurements

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 59

OUTPUT OF THEATMOSPHERIC/TOPOGRAPHICCORRECTION FOR QUANTITATIVECOMPARISONS IN MULTITEMPORALSTUDIES

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 60

BRDF normalization with aclass specific Ambrals model(U. Beisl, 2001)

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 61

PROSPECT+SAIL simulation Actual CHRIS/PROBA data

Alfalfa field

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 62

Bach et al., 2006

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 63

Hot spot effect

POLDER HyMAP

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 64

Working with data series:spatial and spectral

consistency

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 65

corn

wheat

Temporalevolution of

surface reflectance

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 66

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 67

2003 growingSeasonBarrax

Validation 15/07/2003 LANDSAT LAI

0.0

1.0

2.0

3.0

4.0

5.0

6.0

0.0 1.0 2.0 3.0 4.0 5.0 6.0

LANDSAT retrieved

Gro

und

mea

sure

men

ts ALFALFACORNPAPAVERPOTATOSUGARBEETGARLICONION

CORNALFALFA

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 68

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 69

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 70

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 71

SPATIAL CONSISTENCY

- Spatial resolution of individual images in the series

- Geocoding accuracy- Resampling methods

- Changes in view angle implychanges in geometry (resolution)

- Composites of multiple satellite dataare especially critical

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 72

Temporalseriesmade with a combinationof images frommultiple satellitesmust take care ofdifferent spectralsampling

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 73

“similar”spectralbandsare notalwaysfullycompatible

3 September 2007 D1La4 Advanced Optical – Modelling and Data Processing Jose Moreno 74

MODELLING ASPECTS- bare soil bi-directional reflectance modelling - leaf reflectance/transmittance modelling - canopy bi-directional reflectance modelling - atmospheric effects in surface reflectance (diffuse radiation) - at sensor radiance modelling (surface+atmosphere)

model inversion techniques classification techniques

- energy/water surface-atmosphere exchange processes - role of vegetation dynamics in the terrestrial carbon cycle

data assimilation techniques spectral unmixing