Addition and elimination reactions are exactly opposite. A bond is formed in elimination reactions,...

Post on 17-Jan-2016

235 views 0 download

Tags:

Transcript of Addition and elimination reactions are exactly opposite. A bond is formed in elimination reactions,...

Addition and elimination reactions are exactly opposite. A bond is formed in elimination reactions, whereas a bond is broken in addition reactions.

5

Bond Making and Bond Breaking

• A reaction mechanism is a detailed description of how bonds are broken and formed as starting material is converted into product.

• A reaction can occur either in one step or a series of steps.

6

• Regardless of how many steps there are in a reaction, there are only two ways to break (cleave) a bond: the electrons in the bond can be divided equally or unequally between the two atoms of the bond.

7

• Homolysis and heterolysis require energy.• Homolysis generates uncharged reactive intermediates with

unpaired electrons.• Heterolysis generates charged intermediates.

8

• To illustrate the movement of a single electron, use a half-headed curved arrow, sometimes called a fishhook.

• A full headed curved arrow shows the movement of an electron pair.

9

• Homolysis generates two uncharged species with unpaired electrons.

• A reactive intermediate with a single unpaired electron is called a radical.

• Radicals are highly unstable because they contain an atom that does not have an octet of electrons.

• Heterolysis generates a carbocation or a carbanion.• Both carbocations and carbanions are unstable

intermediates. A carbocation contains a carbon surrounded by only six electrons, and a carbanion has a negative charge on carbon, which is not a very electronegative atom.

10

Three reactive intermediates resulting from homolysis and heterolysis of a C – Z bond

11

• Radicals and carbocations are electrophiles because they contain an electron deficient carbon.

• Carbanions are nucleophiles because they contain a carbon with a lone pair.

12

Heterolytically cleave each of the carbon-hetratom bonds and label the organic intermediate as a carbocation or carbanion

a)

OH + OH

carbocation

b) H3CH2C Li H3C CH2+ Li

carbanion

13

• Bond formation occurs in two different ways.• Two radicals can each donate one electron to form a two-

electron bond.• Alternatively, two ions with unlike charges can come together,

with the negatively charged ion donating both electrons to form the resulting two-electron bond.

• Bond formation always releases energy.

Relative stabilities of carbocations

Relative stability of radicals

Dielectric constant (Debye), 25 oC

Polar Protic Aprotic

İncreasing

polarization

HCN 123  

HCONH2 110  

H2SO4 110  

H2O 81  

HCO2H 59  

  49 (CH3)2SO

  38 CH3CN

  37 (CH3)2NCHO

CH3OH 33  

  30 [(CH3)2N]3PO

CH3CH2OH 25  

  23 (CH3)2CO

(CH3)2CHOH 18  

(CH3)3COH 11  

  7 Tetrahydrofuran (THF)

CH3COOH 6  

  4.3 (CH3CH2)2O

  2.3 C6H6

  2 CCl4

Apolar   1.8 n-C5H12

20

Bond Dissociation Energy

• The energy absorbed or released in any reaction, symbolized by H0, is called the enthalpy change or heat of reaction.

• Bond dissociation energy is the H0 for a specific kind of reaction—the homolysis of a covalent bond to form two radicals.

21

• Because bond breaking requires energy, bond dissociation energies are always positive numbers, and homolysis is always endothermic.

• Conversely, bond formation always releases energy, and thus is always exothermic. For example, the H—H bond requires +104 kcal/mol to cleave and releases –104 kcal/mol when formed.

22

• Comparing bond dissociation energies is equivalent to comparing bond strength.

• The stronger the bond, the higher its bond dissociation energy.• Bond dissociation energies decrease down a column of the

periodic table.• Generally, shorter bonds are stronger bonds.

23

Which has the higher bond dissociation energy?

a) H-Cl or H-Br

b)H3C OH H3C SH

(H3C)2C O H3C OCH3c)

24

• Bond dissociation energies are used to calculate the enthalpy change (H0) in a reaction in which several bonds are broken and formed.

25

26

Bond dissociation energies have some important limitations.

• Bond dissociation energies present overall energy changes only. They reveal nothing about the reaction mechanism or how fast a reaction proceeds.

• Bond dissociation energies are determined for reactions in the gas phase, whereas most organic reactions occur in a liquid solvent where solvation energy contributes to the overall enthalpy of a reaction.

• Bond dissociation energies are imperfect indicators of energy changes in a reaction. However, using bond dissociation energies to calculate H° gives a useful approximation of the energy changes that occur when bonds are broken and formed in a reaction.

27

Calculate H for each of the following reactions, knowing H of O2 and O-H = 119 kcal/mol, H of C-H = 104 kcal/ml and H of one C=O = 128 kcal/mol.

a)CH4 + 2O2

CO2 + H2O2

Bonds Broken

C-H = 4 x 104 kcal/mol = 416 kcal/mol

O-O = 2 x 119 kcal/mol

= 238 kcal/mol

H = 416 + 238 = +654 kcal/mol

Bonds Formed

C-O = 2 x -128 kcal/mol = -256 kcal/mol

O-H = 4 x -119 kcal/mol = -476 kcal/mol

H = -256 + -476 = -732 kcal/mol

H = 654 + -732 kcal/mol = -78 kcal/mol