1 TORSION-ROTATION-VIBRATION EFFECTS IN THE v 20, 2 v 21, 2 v 13 AND v 21 + v 13 STATES OF CH 3 CH 2...

Post on 14-Jan-2016

219 views 0 download

Tags:

Transcript of 1 TORSION-ROTATION-VIBRATION EFFECTS IN THE v 20, 2 v 21, 2 v 13 AND v 21 + v 13 STATES OF CH 3 CH 2...

1RA 04

TORSION-ROTATION-VIBRATION EFFECTS IN THE v20, 2 v21, 2 v13 AND v21 + v13 STATES OF CH3CH2CN

Adam M. Daly, John C. Pearson, Shanshan Yu, Brian J. Drouin, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA;

Celina Bermúdez, José Luis Alonso, Grupo de Espectroscopia Molecular, Laboratorio de Espectroscopia y Bioespectroscopia, Unidad Asociada CSIC, Universidad de Valladolid, Valladolid, España

6/19/2014

2RA 04

Background

6/19/2014

Recent Spectroscopic work presented here

WH13 (2009) SUBMILLIMETER SPECTROSCOPY OF THE OUT-OF-PLANE BENDING STATE v20 OF C2H5CN.JOHN C. PEARSON, CAROLYN S. BRAUER, SHANSHAN YU AND BRIAN J. DROUIN, JET PROPULSION LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY, 4800 OAK GROVE DR., PASADENA, CA 91109.

TC 07 (2009) ANALYSIS OF THE LOWEST IN-PLANE BEND AND FIRST EXCITED TORSIONAL (v13 and v21) STATE OF CH3CH2CN.CAROLYN S. BRAUER, JOHN C. PEARSON, BRIAN J. DROUIN, SHANSHAN YU, JET PROPULSION LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY, 4800 OAK GROVE DR., PASADENA, CA 91109.

TC 06 (2009) THE SUBMILLIMETER SPECTRUM OF CH3CH2CN

IN ITS GROUND VIBRATIONAL STATE.CAROLYN S. BRAUER, JOHN C. PEARSON, BRIAN J. DROUIN, SHANSHAN YU, JET PROPULSION LABORATORY, CALIFORNIA INSTITUTE OF TECHNOLOGY, 4800 OAK GROVE DR., PASADENA, CA 91109.

3RA 04

Background

6/19/2014

Literature

Daly, A. M., Bermúdez, C., & López, A, B. Tercero2, J. C. Pearson3, N. Marcelino4, J. L. Alonso1, and J. Cernicharo2

2013, ApJ, 768, 81

Fukuyama Y, Omori K, Odashima H, Takagi K, Tsunekawa S: Analysis of rotational transitions in excited vibrational states of propionitrile (C2H5CN). Journal of Molecular Spectroscopy 1999, 193(1):72-103.

.Mehringer DM, Pearson JC, Keene J, Phillips TG: Detection of vibrationally excited ethyl cyanide in the interstellar medium. Astrophysical Journal 2004, 608(1):306-313.

Brauer CS, Pearson JC, Drouin BJ, Yu SS: NEW GROUND-STATE MEASUREMENTS OF ETHYL CYANIDE. Astrophysical Journal Supplement Series 2009, 184(1):133-137 Duncan, N.E., Janz, G.J. Molecular Structure and Vibrational Spectroscopy of Ethyl Cyanide, Journal of Chemical Physics 1955 23 434-440.

Mader H, Heise HM, Dreizler H: MICROWAVE-SPECTRUM OF ETHYL CYANIDE - R0-STRUCTURE, NITROGEN QUADRUPOLE COUPLING-CONSTANTS AND ROTATION-TORSION-VIBRATION INTERACTION. Z Naturfors Sect A-J Phys Sci 1974, A 29(1):164-183. 

Laurie VW: MICROWAVE SPECTRUM AND INTERNAL ROTATION OF ETHYL CYANIDE. Journal of Chemical Physics 1959, 31(6):1500-1505

Lerner RG, Dailey BP: MICROWAVE SPECTRUM AND STRUCTURE OF PROPIONITRILE. Journal of Chemical Physics 1957, 26(3):678-680.

4

HOT CORE COMPONENT 1 (4’’, 5 Km s-1 respect to LSR,

5 Kms-1 line width )

HOT CORE COMPONENT 3

(25’’, 3 Km s-1 respect to LSR, 22 Kms-1 line width )

Parameters of the Orion-KL region that best simulate the emission line profile of CH3CH2CN using the “Excitation and transfer code” (J. Cernicharo, 2012)

Temperature and column density derived from analysis of rotational transitions of CH3CH2CN define the physical and chemical conditions of the Orion-KL region.

N (cm-2) 275 K 130 K 65 K

N(CH3CH2CN g.s.) (cm−2) (3.0±0.9)x1016 (8±2)x1015 (3.0±0.9)x1015

N(CH3CH2CN ν13=1/ ν 21=1)

N(CH3CH2CN ν20) (cm−2)

N(CH3CH2CN ν12) (cm−2)

(4 ±1)x1015

(1.7 ±0.5)x1015

(6 ±3)x1014

(1.1±0.3)x1015

(4±1)x1014

(1.6±0.5)x1014

(4±1)x1014

(1.7±0.5)x1014

(6±3)x1013

N(13CH3CH2CN) (cm−2)

N(CH313CH2CN) (cm−2)

N(CH3CH213CN) (cm−2)

N(CH3CH213CN) (cm−2)

(7 ±2)x1014

(7 ±2)x1014

(7±2)x1014

(2±1)x1014

(1.9±0.6)x1014

(1.9±0.6)x1014

(1.9±0.6)x1014

(5±3)x1013

(7±2)x1013

(7±2)x1013

(7±2)x1013

(1.7±0.8)x1013

Ethyl cyanide

ORION-KL Nebula

CH3CH2CN

LABORATORY MEASUREMENTS – RADIO

ASTRONOMICAL OBSERVATIONS

A-CH2DCH2CN, S-CH2DCH2CN, CH3CHDCN) “upper limit for the N (cm-2) (tentative detection)”

HOT CORE COMPONENT 2 (10’’, 3 Km s-1 respect to LSR,

13 Kms-1 line width )

5RA 04

Frequency range

6/19/2014

Source Frequency Range

Valladolid Stark 18-110 GHz

Valladolid FM 50-170 GHz, 270-360

Toyoma Line list 26-200 GHz

OSU Line FASSTa 258-368 GHz

JPL 270-318, 395-605GHz

JPL 200-260, 680-800 GHz, 940-1.5 THz

a S. M. Fortman, I. R. Medvedev, C. F. Neese, and F. C. De Lucia. ApJ725, 1682 (2010).

6RA 04

Stark spectroscopy

6/19/2014

Daly, A. M., Bermúdez, C., & López, A, B. Tercero2, J. C. Pearson3, N. Marcelino4, J. L. Alonso1, and J. Cernicharo2 2013, ApJ, 768, 81

7

8RA 04

Background

6/19/2014

Authors States Frequency Range

Bauer, et al G.S. Up to 1.6 THz

Fukuyama

Mehringer D.M. et al

v13, v21 Up to 40 GHzUp to 300 GHz

FukuyamaDaly, et al

v20 Up to 40 GHzUp to 600 GHz

Daly, et al v12 Up to 600 GHz

Fortman, et al. All states 210-270 GHz

9RA 046/19/2014

Calc Energy cm-1 A” A’ A” A’

374 n20Coriolis(a,b) Fermi strong Coriolis(a,b)

406 2n13Coriolis(a,b) Darling-Dennison(e-e)

weak

421 n21+v13Coriolis(a,b)

425 2n21

Calc Energy cm-1 A’ A” A’

530 n12Coriolis Fermi

575 n20+v13Coriolis

581 n20+v21

The Hamiltonians

10RA 046/19/2014

State Vibrational E

E Lower570-640 Range

J 67-75

Ave Energy – G.S. Energy

Predicted Energy**

Predicted anharmonic energy

Percent anharmonic

GS 0 725 - - - -n13 200 895 169 203 203 0.0n21 200 961 236 223 216 3.1n20 369 1115 390 375 371 1.12n13 400 1168 443 407 406 0.22n21 400 1183 458 446 425 4.7

n21+v13 400 1152 427 426.9 421 1.3n12 530 1273 548 534 530 0.7

n20+v13 574 1298 573 578 575 0.5

n20+n21* 574 1213 488 598 581 2.8

*two points removed** MP2/aug-cc-pVTZ

K=0&1 Data sets in the De Lucia Temperature Study

11

2v13

K 0&1

v20 K 0&12v21

K 0&1V13+V21 K 1&2

2v13 K 1&2

2v21K1&2

v20 K 2&3v20

K 1&2

V13+V21 K 0&12v13 K 2&3

2v21 K 2&3

12

K=0&1 andK=1&2 series 4 state fit

2v21

K 0&1

v20 K 2&3

v20 K 1&2 v20 K 0&1

2v13

K 0&1

2v13 K 1&22v21K1&2

V13+V20 K 0&1

V13+V21 K 1&2

13RA 046/19/2014

2v13 K 2&32v21

K 2&3

V13+V21 K 2&3?

2v21K1&2

2v13 K 1&2?

V13+V21 K 1&2

V13+V21 K 0&1

14

K=1&2 2V21 641540.5 -705.527 633075.3 -818.539 Series 4 &5 K=1&2 2V21 641552.6 -693.41 633084.7 -809.121 Series 4 &5 K=1&2 V13+V21 641938.9 -307.07 633606.7 -287.101 Stack T 641949.5 -296.557 633619.8 -274.043 642049.6 633652.1 fat K=1&2 vt=1 75-74 642149.4 -96.618 633806.3 -87.519 642182.1 634007.4 K=1&2 GS 75-74 642246 633893.8 625538.7 K=1&2 Vbo 75-74 642989.9 743.856 634626.7 732.894 626260.9 722.28 K=1&2 Vbi=1 75-74 643121.7 875.725 634754.7 860.873 626384.5 845.881 K=1&0 2V21 76-75 643517.7 534.052 635176.8 520.879 626833.9 506.869 Already K=1&0 2V21 76-75 643518.9 532.852 635178.5 519.243 626836.1 504.734 Assigned

K=1&0 V21 76-75 643855.1 196.594 635506.4 191.29 627154.9 185.937 K=1&2 2V13 643979.2 635592.5 -105.233 627204.8 -135.975 618815.5 -165.388

series a from ppt 643987.7 these? series a from PPT

643992.1 these? K=1&0 GS 76-75 644051.7 1805.692 635697.7 1803.875 627340.8 618980.9 V21+V13 K=1&0 644864.9 813.23 636510 812.279 628154.2 813.364 Series P&Q 644864.9 2618.922 636511.9 2618.055 628155.2 2616.508 Series P&Q K=1&0 Vop 76-75 644874.7 822.972 636510 812.323 628141.9 801.105 K=1&0 vbi=1 76-75 644942 890.319 636576.1 878.359 628207.2 866.426 K=1&0 2V13 645707.4 1655.738 637323.1 1625.437 628935.1 1594.278 Already K=1&0 2V13 645711.2 1659.51 637327.5 1629.751 628940 1599.225 Assigned

Color Scheme in Loomis-Wood Plot

15RA 046/19/2014

K=0&1 series 3 state fit

v20+v21 v20+v13

v12

16RA 04

Signal Strength

6/19/2014

v12 585,54→575,53

602,59→592,58 A/E

v20+v13

601,59→591,58 A/E

G.S,576,51→566,50

17RA 046/19/2014

n20 Ka = 0, 1 and 2

Ka = 0 Ka = 1 Ka = 2

n0 from g.s sametransition

Lower

Upper

v20 analysis

18RA 046/19/2014

n20 Ka = 3, 4, 5

Ka = 3 Ka = 4 Ka = 5

Lower

Upper

v20 analysis

19RA 046/19/2014

n20 Ka = 3 perturbation

n20 Ka=3 with 2n13 and 2n21 Ka=0 & 1

Kc=odd interaction (a,b) symmetry

Perturbations in v20

20RA 046/19/2014

n20 Ka = 4 perturbation

Perturbations in v20

21RA 046/19/2014

n20 Ka = 4 perturbation

Perturbations in v20

22RA 046/19/2014

n20 Ka = 6, 7, 8, 9

Ka = 6 Ka = 7

Ka = 8

Ka = 9

v20 analysis

23RA 046/19/2014

0 10 20 30 40 50 60 70 80 900

10

20

30

40

50

60

70

80

K0K1 lowerK1 UPPERK 2 lowerK3 LowerK2 UpperK3 UpperK4 LowerK4 UpperK5 Lower K5 UpperK6 LowerK6 UpperK7 LowerK7 Upper

J

cm -1

54.23 cm-1

38.40 cm-1

Energy levels of v20

24RA 046/19/2014

Calc Energy cm-1 A” A’ A” A’

374 n20Coriolis(a,b) Fermi strong Coriolis(a,b)

406 2n13Coriolis(a,b) Darling-Dennison(e-e)

weak

421 n21+v13Coriolis(a,b)

425 2n21

Calc Energy cm-1 A’ A” A’

530 n12Coriolis Fermi

575 n20+v13Coriolis

581 n20+v21

Conclusion - Under construction

25RA 04

Future Studies

• Continue work on excited vibrational states– v20, 2v13, 2v21, v21+v13

• 13C isotopes from University of Lille– Assign G.S. up to 1.6 THz– Assign the v21/v13, v20, v12

– 232, 223 and 322– Freq: 75-113 Ghz J= 9-13 a-dipole K=0– 155-325 GHz J= 17-38 a-dipole K=0– 407-650 GHz J= 48-76 a-dipole K=0– 780-987GHz but 940 GHz is highest recognized transition of ground state ( R-branch J=52, Ka=11)JPL– JPL– 355-410 GHz using chain of the 1.1 THz source and final tripler removed.– 680-810 GHz using new chain – 1p0, 1p1, 1p4 and 1p5 was measured by SYu 940-1610 GHz

6/19/2014

26RA 04

Acknowledgements• John C. Pearson• Shanshan Yu • Brian J. Drouin• Celina Bermúdez• José Luis Alonso• Caltech Postdoctoral Scholarship Program• Herschel project at JPL

6/19/2014